We describe the intrinsic mechanism of 2-dimensional electron confinement at the n-type SrTiO3/LaAlO3 interface as a function of the sheet carrier density n(s) via advanced first-principles calculations. Electrons localize spontaneously in Ti 3d(xy) levels within a thin (≲2 nm) interface-adjacent SrTiO3 region for n(s) lower than a threshold value n(c)∼10(14) cm(-2). For n(s)>n(c) a portion of charge flows into Ti 3d(xz)-d(yz) levels extending farther from the interface. This intrinsic confinement can be attributed to the interface-induced symmetry breaking and localized nature of Ti 3d t(2g) states. The sheet carrier density directly controls the binding energy and the spatial extension of the conductive region. A direct, quantitative relation of these quantities with n(s) is provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.106.166807 | DOI Listing |
ACS Omega
January 2025
Department of Physics, Government General Degree College Gopiballavpur-II, Jhargram 721517, India.
Effective engineering of nanostructured materials provides a scope to explore the underlying photoelectric phenomenon completely. A simple cost-effective chemical reduction route is taken to grow nanoparticles of Cd Zn S with varying = 1, 0.7, 0.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Institute of Micro and Nano Electronics, Chavchavadze Ave. 13, Tbilisi 0179, Georgia.
Recently, geometry-induced quantum effects in a new quasi-1D system, or nanograting (NG) layers, were introduced and investigated. Dramatic changes in band structure and unconventional photoluminescence effects were found in silicon quantum wells with high-energy barriers. Nanograting metal-semiconductor junctions were fabricated and investigated.
View Article and Find Full Text PDFAnal Chem
December 2024
Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
Nanophotonics
April 2024
Dipartimento di Scienze, Università; degli Studi Roma Tre, Viale G. Marconi 446, Roma 00146, Italy.
A parabolic potential that confines charge carriers along the growth direction of quantum wells semiconductor systems is characterized by a single resonance frequency, associated to intersubband transitions. Motivated by fascinating quantum optics applications leveraging on this property, we use the technologically relevant SiGe material system to design, grow, and characterize n-type doped parabolic quantum wells realized by continuously grading Ge-rich Si Ge alloys, deposited on silicon wafers. An extensive structural analysis highlights the capability of the ultra-high-vacuum chemical vapor deposition technique here used to precisely control the quadratic confining potential and the target doping profile.
View Article and Find Full Text PDFMacromolecules
October 2024
School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, Mississippi 39406, United States of America.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!