Fourier methods for the perturbed harmonic oscillator in linear and nonlinear Schrödinger equations.

Phys Rev E Stat Nonlin Soft Matter Phys

Universitat Politècnica de València, Instituto de Matemática Multidisciplinar, E-46022 Valencia, Spain.

Published: April 2011

We consider the numerical integration of the Gross-Pitaevskii equation with a potential trap given by a time-dependent harmonic potential or a small perturbation thereof. Splitting methods are frequently used with Fourier techniques since the system can be split into the kinetic and remaining part, and each part can be solved efficiently using fast Fourier transforms. Splitting the system into the quantum harmonic-oscillator problem and the remaining part allows us to get higher accuracies in many cases, but it requires us to change between Hermite basis functions and the coordinate space, and this is not efficient for time-dependent frequencies or strong nonlinearities. We show how to build methods that combine the advantages of using Fourier methods while solving the time-dependent harmonic oscillator exactly (or with a high accuracy by using a Magnus integrator and an appropriate decomposition).

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.83.046711DOI Listing

Publication Analysis

Top Keywords

fourier methods
8
harmonic oscillator
8
time-dependent harmonic
8
fourier
4
methods perturbed
4
perturbed harmonic
4
oscillator linear
4
linear nonlinear
4
nonlinear schrödinger
4
schrödinger equations
4

Similar Publications

The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.

View Article and Find Full Text PDF

Amorphous solid dispersion (ASD) is one of the most studied strategies for improving the dissolution performance of poorly water-soluble drugs, but ASDs often have low drug loadings, thereby necessitating larger dosage sizes. This study intended to create Soluplus® (SOL)-based microparticle ASDs with high drug loading (up to 60 w/w%) and long-term stability (at least 16 months) using electrospraying to enhance the dissolution of poorly water-soluble celecoxib (CEL). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed that the electrosprayed SOL-CEL microparticles were amorphous, and Fourier transform infrared spectroscopy (FTIR) data indicated the presence of hydrogen bonding between SOL and CEL in the microparticles, which helped stabilize the ASDs.

View Article and Find Full Text PDF

Purple passion fruit peel (PPFP) is a common biomass waste. Meanwhile, hydrothermal carbonization (HTC) is a common technology used for thermal conversion of biomass waste. Herein, the aqueous phase (AP) of PPFP was determined using HTC, and its properties were studied.

View Article and Find Full Text PDF

Antimicrobial biodegradable packaging films from phosphorylated starch: A sustainable solution for plastic waste.

Carbohydr Res

January 2025

Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, 136119, Haryana, India. Electronic address:

This study focused on developing biodegradable packaging films based on starch as an alternative to non-biodegradable such as petroleum-derived synthetic polymers. To improve its physicochemical properties, potato starch was chemically modified through phosphorylation. Starch phosphorylation was carried out using cyclic 1,3-propanediol phosphoryl chloride (CPPC), produced phosphorylated starch (PS), and analyzed using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Nuclear magnetic resonance (NMR), and Thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Measuring low light absorption with combined uncertainty <1 per mil (‰) is crucial for many applications. Popular cavity ring-down spectroscopy can provide ultrahigh precision, below 0.01‰, but its accuracy is often worse than 5‰ due to inaccuracies in light intensity measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!