Using dynamical barriers to control the transmission of light through slowly varying photonic crystals.

Phys Rev E Stat Nonlin Soft Matter Phys

School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.

Published: April 2011

We use semiclassical Hamiltonian optics to investigate the propagation of light rays through two-dimensional photonic crystals when slow spatial modulation of the lattice parameters induces mixed stable-chaotic ray dynamics. This modulation changes both the shape and frequency range of the allowed frequency bands, thereby bending the resulting semiclassical ray trajectories and confining them within particular regions of the crystal. The curved boundaries of these regions, combined with the bending of the orbits themselves, creates a hierarchy of stable and unstable chaotic trajectories in phase space. For certain lattice parameters and electromagnetic wave frequencies, islands of stable orbits act as a dynamical barrier, which separates the chaotic trajectories into two distinct regions of the crystal, thereby preventing the rays propagating through the structure. We show that changing the frequency of the electromagnetic wave strongly affects the distribution of stable and unstable orbits in both real and phase space. This switches the dynamical barriers on and off and thus modulates the transmission of rays through the crystal. We propose microwave analogs of the photonic crystals as a route to the experimental study of the transport effects that we predict.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.83.046209DOI Listing

Publication Analysis

Top Keywords

photonic crystals
12
dynamical barriers
8
lattice parameters
8
regions crystal
8
stable unstable
8
chaotic trajectories
8
phase space
8
electromagnetic wave
8
barriers control
4
control transmission
4

Similar Publications

Anisotropy is a fundamental property of both material and photonic systems. The interplay between material and photonic anisotropies, however, has hardly been explored due to the vastly different length scales. Here we demonstrate exciton polaritons in a 2D antiferromagnet, CrSBr, coupled with an anisotropic photonic crystal cavity, where the spin, atomic, and photonic anisotropies are strongly correlated.

View Article and Find Full Text PDF

Molecularly imprinted hydrogels embedded with two-dimensional photonic crystals for the detection of dexamethasone/betamethasone sodium phosphate.

Mikrochim Acta

January 2025

Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, School of Medicine, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China.

Dexamethasone sodium phosphate (DSP) and betamethasone sodium phosphate (BSP) imprinted hydrogels embedded with two-dimensional photonic crystals (2DPC) were developed as hormones-sensitive photonic hydrogel sensors with highly sensitive, selective, anti-interference and reproducible recognition capability. The DSP/BSP molecularly imprinted photonic hydrogels (denoted as DSP-MIPH and BSP-MIPH) can specifically recognize DSP/BSP by rebinding the DSP/BET molecules to nanocavities in the hydrogel network. This recognition is enabled by the similar shape, size, and binding sites of the nanocavities to the target molecules.

View Article and Find Full Text PDF

Silica nano/microparticles have generated significant interest for the past decades, emerging as a versatile material with a wide range of applications in photonic crystals, bioimaging, chemical sensors, and catalysis. This study focused on synthesizing silica nano/microparticles ranging from 20 nm to 1.2 μm using the Stöber and modified Stöber methods.

View Article and Find Full Text PDF

The organic semiconductor Y6 has been extensively used as an acceptor in organic photovoltaic devices, yielding high efficiencies. Its unique properties include a high refractive index, intrinsic exciton dissociation, and barrierless charge generation in bulk heterojunctions. However, the direct impact of the crystal packing morphology on the photophysics of Y6 has remained elusive, hindering further development of heterojunction and homojunction devices.

View Article and Find Full Text PDF

We propose and demonstrate integrated photonic crystal (PhC) beam splitters based on X-cut thin film lithium niobate (TFLN). Its working principle is based on bandgap guidance and total reflection in the PhC slab. We designed two structures: one features a triangular lattice, while the other exhibits a tetragonal lattice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!