Primitive chain network simulations for asymmetric star polymers.

J Chem Phys

Institute for Chemical Research, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan.

Published: May 2011

For branched polymers, the curvilinear motion of the branch point along the backbone is a significant relaxation source but details of this motion have not been well understood. This study conducts multi-chain sliplink simulations to examine effects of the spatial fluctuation and curvilinear hopping of the branch point on the viscoelastic relaxation. The simulation is based on the primitive chain network model that allows the spatial fluctuations of sliplink and branch point and the chain sliding along the backbone according to the subchain tension, chemical potential gradients, drag force against medium, and random force. The sliplinks are created and∕or disrupted through the motion of chain ends. The curvilinear hopping of the branch point along the backbone is allowed to occur when all sliplinks on a branched arm are lost. The simulations considering the fluctuation and the hopping of the branch point described well the viscoelastic data for symmetric and asymmetric star polymers with a parameter set common to the linear polymer. On the other hand, the simulations without the branch point motion predicted unreasonably slow relaxation for asymmetric star polymers. For asymmetric star polymers, further tests with and without the branch point hopping revealed that the hopping is much less important compared to the branch point fluctuation when the lengths of the short and long backbone arms are not very different and the waiting time for the branch point hopping (time for removal of all sliplinks on the short arm) is larger than the backbone relaxation time. Although this waiting time changes with the hopping condition, the above results suggest a significance of the branch point fluctuation in the actual relaxation of branch polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3590276DOI Listing

Publication Analysis

Top Keywords

branch point
40
asymmetric star
16
star polymers
16
hopping branch
12
branch
11
point
10
primitive chain
8
chain network
8
point backbone
8
backbone relaxation
8

Similar Publications

Acetylation modification in the regulation of macroautophagy.

Adv Biotechnol (Singap)

June 2024

Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.

Macroautophagy, commonly referred to as autophagy, is an evolutionarily conserved cellular process that plays a crucial role in maintaining cellular homeostasis. It orchestrates the delivery of dysfunctional or surplus cellular materials to the vacuole or lysosome for degradation and recycling, particularly during adverse conditions. Over the past few decades, research has unveiled intricate regulatory mechanisms governing autophagy through various post-translational modifications (PTMs).

View Article and Find Full Text PDF

Anatomical characterization of Semi-arid Bignoniaceae using light and scanning electron microscopy.

BMC Plant Biol

January 2025

Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia.

Background: The present research work was done to evaluate the anatomical differences among selected species of the family Bignoniaceae, as limited anatomical data is available for this family in Pakistan. Bignoniaceae is a remarkable family for its various medicinal properties and anatomical characterization is an important feature for the identification and classification of plants.

Methodology: In this study, several anatomical structures were examined, including stomata type and shape, leaf epidermis shape, epidermal cell size, and the presence or absence of trichomes and crystals (e.

View Article and Find Full Text PDF

Imaging of elbow entrapment neuropathies.

Insights Imaging

January 2025

IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.

Entrapment neuropathies at the elbow are common in clinical practice and require an accurate diagnosis for effective management. Understanding the imaging characteristics of these conditions is essential for confirming diagnoses and identifying underlying causes. Ultrasound serves as the primary imaging modality for evaluating nerve structure and movement, while MRI is superior for detecting muscle denervation.

View Article and Find Full Text PDF

Developmental endothelial locus-1 as a potential biomarker for the formation and progression of intracranial aneurysm.

Gene

January 2025

Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China; Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing 400038, China; Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore. Electronic address:

Background: Intracranial aneurysms (IAs) are pathological dilations occurring at major branch points of cerebral arteries, which can lead to aneurysmal subarachnoid hemorrhage (aSAH) upon rupture. Recent studies have identified developmental endothelial locus-1 (DEL1) as closely associated with IA, though its role remains not fully understood. This study aimed to investigate serum DEL1 level differences in IA patients and explore its function in vascular endothelial cells.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative condition with rising prevalence due to the aging global population. Existing methods for diagnosing AD are struggling to detect the condition in its earliest and most treatable stages. One early indicator of AD is a substantial decrease in the brain's glucose metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!