Vibrational mode analysis of isotope-labeled electronically excited riboflavin.

J Phys Chem B

Fachbereich Physik, TU Kaiserslautern, D-67663 Kaiserslautern, Germany.

Published: June 2011

AI Article Synopsis

  • The study utilizes isotope-labeled riboflavin in DMSO alongside advanced spectroscopic techniques and quantum chemical calculations to examine the vibrational modes of the isoalloxazine unit, which serves as a model for flavin-binding blue-light receptors.
  • Focus is placed on carbonyl vibrations of specific riboflavin analogues (RF-2-(13)C and RF-4,10a-(13)C), employing various quantum chemical models to account for environmental effects and hydrogen bonding.
  • Results demonstrate the successful application of the CIS quantum-chemistry method for describing the riboflavin's lowest singlet excited state, leading to a detailed assignment of ground and excited-state vibrations based on observed

Article Abstract

Isotope-labeled riboflavin in DMSO was employed in conjunction with femtosecond time-resolved infrared vibrational spectroscopy and quantum chemical calculations to analyze and assign the electronically excited state vibrational modes of the isoalloxazine unit as a prototype for the cofactors in flavin binding blue-light receptors. Using the riboflavin (13)C-analogues RF-2-(13)C and RF-4,10a-(13)C, the carbonyl vibrations, in particular, were studied. Various quantum chemical models were applied that take into account a polarizable environment or the impact of hydrogen bonds. The CIS quantum-chemistry method was successfully applied to describe the lowest singlet excited electronic state in riboflavin. The experimentally observed frequencies and isotope-shifts as well as their variability in the diverse model calculations are discussed. On these grounds, a consistent assignment of the electronic ground and excited state vibrations is presented.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp110784tDOI Listing

Publication Analysis

Top Keywords

electronically excited
8
quantum chemical
8
excited state
8
vibrational mode
4
mode analysis
4
analysis isotope-labeled
4
isotope-labeled electronically
4
excited
4
riboflavin
4
excited riboflavin
4

Similar Publications

This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.

View Article and Find Full Text PDF

Controlling the light emitted by individual molecules is instrumental to a number of advanced nanotechnologies ranging from super-resolution bioimaging and molecular sensing to quantum nanophotonics. Molecular emission can be tailored by modifying the local photonic environment, for example, by precisely placing a single molecule inside a plasmonic nanocavity with the help of DNA origami. Here, using this scalable approach, we show that commercial fluorophores may experience giant Purcell factors and Lamb shifts, reaching values on par with those recently reported in scanning tip experiments.

View Article and Find Full Text PDF

Light-driven molecular rotary motors are nanometric machines able to convert light into unidirectional motions. Several types of molecular motors have been developed to better respond to light stimuli, opening new avenues for developing smart materials ranging from nanomedicine to robotics. They have great importance in the scientific research across various disciplines, but a detailed comprehension of the underlying ultrafast photophysics immediately after photo-excitation, that is, Franck-Condon region characterization, is not fully achieved yet.

View Article and Find Full Text PDF

The experimental and theoretical study of photovoltage formation in perovskite solar cells under pulsed laser excitation at 0.53 μm wavelength is presented. Two types of solar cells were fabricated on the base of cesium-containing triple cation perovskite films: (1) Cs(FAMA)Pb(IBr) and (2) Cs(FAMA)PbSn(IBr).

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) with highly ordered structures and predictable optoelectronic properties provide an ideal platform to investigate the electrochemiluminescence (ECL) performance based on organic materials by atomically varying the molecular construction. Herein, the effect of imine-bond orientation on the ECL performance of COFs is investigated. We report two COFs (NC-COF and CN-COF) with different orientations of imine bonds using pyrene donor units (D) and bipyridine acceptor motifs (A) monomers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!