Objective: To study the chemical changes of salvianolic acid B and lithospermic acid of Salvia miltiorrhiza under the conditions of high temperature and high pressure and explore the reaction mechanism.
Method: S. miltiorrhiza extracts, salvianolic acid B and lithospermic acid were put in the reactor under the conditions of high temperature and high pressure (120 degrees C, 0.2 MPa), and the chemical changes and stability was studied.
Result: Salvianolic acid A was the primary product in salvianolic acid B and lithospermic acid's conversion process, and lithospermic acid was an intermediate in the conversion process of salvianolic acid B. Compared with salvianolic acid B, lithospermic acid could convert into more salvianolic acid A and fewer other products in the same conditions. Salvianolic acid A was not stable under the conditions of high temperature and high pressure, and could sequentially convert into other small molecules.
Conclusion: Referring to the chemical conversion of salvianolic acid B and lithospermic acid, a method of large-scale preparation of salvianolic acid A can be developed.
Download full-text PDF |
Source |
---|
Front Pharmacol
January 2025
Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
Introduction: The pathogenesis of renal fibrosis is related to blood stasis, and the method of promoting blood circulation and removing blood stasis is often used as the treatment principle. Danshen injection (DSI) is a commonly used drug for promoting blood circulation and removing blood stasis in clinic. However, whether DSI slows the progression of renal fibrosis or the potential mechanism is uncertain.
View Article and Find Full Text PDFMater Today Bio
February 2025
Anhui University of Chinese Medicine, Hefei, 230012, China.
The therapeutic effect of immune checkpoint inhibitors (ICIs) in triple-negative breast cancer (TNBC) is unsatisfactory. The immune "cold" microenvironment caused by tumor-associated fibroblasts (TAFs) has an adverse effect on the antitumor response. Therefore, in this study, mixed cell membrane-coated porous magnetic nanoparticles (PMNPs) were constructed to deliver salvianolic acid B (SAB) to induce an antitumor immune response, facilitating the transition from a "cold" to a "hot" tumor and ultimately enhancing the therapeutic efficacy of immune checkpoint inhibitors.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China. Electronic address:
Cardiac metabolism relies on glycogen conversion by glycolysis. Glycolysis intersects fatty acid oxidation and often directs a signal crosstalk between redox metabolites. Myocardium with ischemia/reperfusion significantly diverts from normal metabolism.
View Article and Find Full Text PDFPhytochem Anal
January 2025
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
Objectives: The quality of 30 batches of the Tibetan Dracocephali tangutici Herba was evaluated using HPLC fingerprinting and DNA sequences.
Methods: Botanical identification of 30 batches of D. tangutici herba was conducted using the DNA barcoding approach, specifically analyzing the ITS and rbcL sequences.
Int J Pharm
January 2025
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515 China. Electronic address:
Atherosclerosis, a major cause of cardiovascular diseases, involves complex pathophysiological processes. The co-delivery of multiple bioactive components derived from phytomedicine to atherosclerotic plaque is challenging, especially for those with varied solubilities. This study introduces a novel metal-phenolic network-based core-shell recombinant high-density lipoprotein nanocarrier (SSPH-MPN@rHDL) for co-delivering multiple bioactive components from Salvia miltiorrhiza and Carthamus tinctorius, including salvianic acid A (SAA), salvianolic acid B (SAB), protocatechuic aldehyde (PCA), hydroxysafflor yellow A (HSYA), and tanshinone IIA (TS-IIA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!