AI Article Synopsis

  • The study aimed to analyze how stress is distributed in bone around dental implants under lateral immediate loading at various angles using a three-dimensional finite element model.
  • A 3D mesh model of an edentulous mandible was created from CT scans, and different angles of lateral load were tested to observe the resulting Von Mises stress on the bone.
  • Results indicated that vertical loads distribute stress evenly, whereas lateral loads significantly increase stress concentration, especially at the cortical bone cervix of the implant, with stress values being up to four times higher compared to vertical loading.

Article Abstract

Objective: To analyze the stress distribution of bone around the dental implants with lateral immediate loading of different angles by three dimensional finite element.

Methods: An adult edentulous mandible was adopted for CT scanning. The CT image was imported to universal surgical integration system to establish a mandible three dimensional mesh model. The real shape of standard thread implant was simulated and the finite element model of mandible with dental implants for immediate loading was established. The models were immediately loaded with 150 N through the angle of 0 degrees, 10 degrees, 20 degrees, 30 degrees. The ANSYS 10.0 was used to analyze the Von Mises stress on the bone around dental implants.

Results: The accurate finite element model of mandible with dental implants for immediate loading was successfully established. The three dimensional finite element analytical results showed: Under axial load, the Von Mises stress of bone contact surface concentrated on the cortical bone of the implant cervix. The strain distribution was even, and centralized at the cortical bone of the implant cervix, cancellous bone of implant bottom and thread contact area. Under different lateral angle load, the Von Mises stress of bone contact surface also concentrated on the cortical bone of the implant cervix, but the maximum value was 4 times of the vertical loading, the strain distributed unevenly, mainly concentrated on the cortical bone of the implant cervix. With the load angle increased, the stress and the strain value also increased.

Conclusion: When an axial force was immediately loaded, the stress value and the strain concentration value of bone interface around the dental implants are not apparently concentrated, the stress is distributed well. While a lateral force is loaded, the stress values and the strain concentration values of bone interface around the dental implants apparently increase and the strain are distributed unevenly.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dental implants
24
bone implant
20
finite element
16
cortical bone
16
implant cervix
16
dimensional finite
12
three dimensional
12
degrees degrees
12
von mises
12
mises stress
12

Similar Publications

Background: The stability of soft and hard tissues surrounding the implant is not only a matter of aesthetics, but also affects the long-term stability of the implant. The present study was to explore the influence of buccal mucosa width/height (W/H) ratio, emergence profile and buccal bone width on peri-implant soft and hard tissue changes in the posterior region.

Methods: Fifty-eight posterior implant restoration cases were recruited in this study.

View Article and Find Full Text PDF

Hydroxyapatite nanoparticles (HANPs) are becoming increasingly crucial in dental implant applications as they are highly compatible with biological systems, actively support biological processes, and closely resemble bone minerals. This review covers the latest progress in how HANPs are made, studied, and used in dentistry. It looks at critical methods for creating HANPs, such as sol-gel, microwave hydrothermal synthesis, and biomimetic approaches, and how they affect the particles' size, structure, and activity.

View Article and Find Full Text PDF

Static Zygomatic Guides: Digital ZAGA Concept.

Oral Maxillofac Surg Clin North Am

January 2025

Desert Ridge Oral Surgery Institute, 20950 N Tatum Boulevard #200, Phoenix, AZ 85050, USA; Private Practice of Oral and Maxillofacial Surgery, Phoenix, AZ, USA; Banner University Medical Center, Department of Oral and Maxillofacial Surgery, University of Arizona, Phoenix, AZ, USA.

Guided zygomatic implant placement surgery has emerged as a promising solution for patients with severe maxillary bone loss, offering precise implant placement and predictable outcomes. This article provides a comprehensive review of the current state-of-the-art techniques, advantages, challenges, and future directions in guided zygomatic implant surgery.

View Article and Find Full Text PDF

Evaluation of sticky bone in guided bone regeneration in the aesthetic area of the anterior teeth: a retrospective study.

Int J Oral Maxillofac Surg

January 2025

Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China. Electronic address:

The retrospective study aimed to compare the space-maintaining effects of sticky bone (bone graft matrix enriched with injectable platelet-rich fibrin) and titanium mesh for bone augmentation in the aesthetic zone. Patients who underwent single implant placement and had type 2/4 alveolar bone defects (buccal bone wall loss is >50% of the expected implant length) were screened for inclusion in this study. The labial bone plate width was measured at 1, 3, and 5 mm below the apical implant platform on cone beam computed tomography images taken immediately and 6 months after surgery.

View Article and Find Full Text PDF

Feasibility, trueness and precision of intraoral scanners in digitizing maxillectomy defects with exposed zygomatic implants in situ: An in vitro 3D comparative study.

J Dent

January 2025

Department of Reconstructive Dentistry and Gerodontology, University of Bern, Bern, Switzerland; Department of Conservative Dentistry and Orofacial Prosthodontics, Complutense University of Madrid, Madrid, Spain; Complutense University of Madrid, Ramon y Cajal Research Institute (IRYCIS). Madrid, Spain. Electronic address:

Objectives: To in-vitro evaluate the feasibility and accuracy (trueness and precision) of various intraoral scanners (IOS) to digitize maxillectomy defect models with exposed zygomatic implants in situ.

Material And Methods: Six partially edentulous and edentulous maxillectomy defect models with 2 zygomatic implants each were obtained. References scans were obatined by using a laboratory scanner (inEos X5; Dentsply Sirona).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!