A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Membrane proteomic signatures of karyotypically normal and abnormal human embryonic stem cell lines and derivatives. | LitMetric

Cultured human embryonic stem cells (hESCs) and derived derivatives contain heterogeneous cell populations with varying degrees of differentiation and karyotypic stability. The inability to isolate homogenous population presents a challenge toward cell-based applications and therapies. A proteomics approach was utilized to discover novel membrane proteins able to distinguish between the hESC lines BG01, WA09, and abBG02 (trisomy 12, 14, 17 and an extra copy of the X chromosome), along with WA09-derived human neural progenitor (hNP) cells. Membrane protein signatures were developed using sucrose-gradient isolation, 1-D gel electrophoresis followed by in-gel digestion and analysis by reverse phase chromatography coupled to ion trap-FT-ICR. At a ≤1.0% false discovery rate, 1918 proteins were identified; 775 were annotated as membrane proteins and 720 predicted to contain transmembrane spanning regions. Flow cytometry was used to validate cell surface expression of selected proteins. Junctional adhesion molecule 1 expression was shared by BG01, BG02 and abBG02 hESC lines. Dysferlin expression was specific to the WA09 hESC line and not the derived neural or mesenchymal progenitors. Ciliary neurotrophic factor receptor distinguished WA09-derived human neural progenitor cells from the parent hESC population, and WA09-derived mesenchymal progenitor cells. This study expands the current membrane protein data set for hESCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.201000032DOI Listing

Publication Analysis

Top Keywords

human embryonic
8
embryonic stem
8
membrane proteins
8
hesc lines
8
wa09-derived human
8
human neural
8
neural progenitor
8
membrane protein
8
progenitor cells
8
membrane
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!