Scale factors for (a) low (<1000 cm(-1)) and high harmonic vibrational frequencies, (b) thermal contributions to enthalpy and entropy, and (c) zero-point vibrational energies have been determined for five hybrid functionals (B3P86, B3PW91, PBE1PBE, BH&HLYP, MPW1K), five pure functionals (BLYP, BPW91, PBEPBE, HCTH93, and BP86), four hybrid meta functionals (M05, M05-2X, M06, and M06-2X) and one double-hybrid functional (B2GP-PLYP) in combination with the correlation consistent basis sets [cc-pVnZ and aug-cc-pVnZ, n = D(2),T(3),Q(4)]. Calculations for vibrational frequencies were carried out on 41 organic molecules and an additional set of 22 small molecules was used for the zero-point vibrational energy scale factors. Before scaling, approximately 25% of the calculated frequencies were within 3% of experimental frequencies. Upon application of the derived scale factors, nearly 90% of the calculated frequencies deviated less than 3% from the experimental frequencies for all of the functionals when the augmented correlation consistent basis sets were used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.21811 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!