The essential role of the Delta-like ligand 4 (Dll4)-Notch signaling pathway in T-lymphocyte development is well established. It has been shown that specific inactivation of Dll4 on thymic stromal cells during early post-natal development leads to a deregulation in T-cell differentiation. However, whether ongoing Dll4-Notch signaling is required for T-cell development in the adult thymus is unknown. The use of anti-Dll4 Abs allowed us to confirm and expand previous studies by examining the kinetics and the reversibility of Dll4-Notch signaling blockade in T-cell development in adult mice. We found that anti-Dll4 treatment reduced thymic cellularity after 7 days, as a consequence of a developmental delay in T-cell maturation at the pro-T-cell double negative 1 (CD4(-) CD8(-) c-kit(+) CD44(+) CD25(-) ) stage, leading to decreased numbers of immature double-positive (CD4(+) CD8(+) ) T cells without affecting the frequency of mature single positive CD4(+) and CD8(+) thymocytes, while promoting alternative thymic B-cell expansion. This cellular phenotype was similarly observed in both young adult and aged mice (>1.5 years), extending our understanding of the ongoing role for Dll4-Notch signaling during T-cell development in the adult thymus. Finally, after cessation of Dll4 Ab treatment, thymic cellularity and thymocyte subset ratios returned to normal levels, indicating reversibility of this phenotype in both adult and aged mice, which has important implications for potential clinical use of Dll4-Notch inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.201041343DOI Listing

Publication Analysis

Top Keywords

dll4-notch signaling
20
adult thymus
12
t-cell development
12
development adult
12
ongoing dll4-notch
8
signaling required
8
required t-cell
8
thymic cellularity
8
cd4+ cd8+
8
adult aged
8

Similar Publications

Cytosolic thiouridylase is a conserved cytoplasmic tRNA thiolase composed of two different subunits, CTU1 and CTU2. CTU2 serves as a scaffold protein, while CTU1 catalyzes the 2-thiolation at the 34th wobble uridine of the anticodon loop. tRNAGlnUUG, tRNAGluUUC, and tRNALysUUU are the tRNA substrates that are modified with a thiol group at the C2 positions (s2) by CTU1, and also with a methoxycarbonylmethyl group at the C5 positions (mcm5) by Elongator and ALKBH8.

View Article and Find Full Text PDF

Background: Vascularization after rib fracture is a crucial physiological process that is essential for the repair and healing of the rib. Studies have shown that CD90 plays a critical role in regulating rib fracture healing, but the underlying mechanism of its role has not been fully elucidated.

Methods: CD90 adenovirus knockout mice were used to construct a rib injury model.

View Article and Find Full Text PDF

Endothelial cells are key players in the cardiovascular system. Among other things, they are responsible for sprouting angiogenesis, the process of new blood vessel formation essential for both health and disease. Endothelial cells are strongly regulated by the juxtacrine signaling pathway Notch.

View Article and Find Full Text PDF

In this study, we conducted a comprehensive analysis to identify key genes and pathways associated with pulmonary arterial hypertension (PAH) and investigated the role of delta-like ligand 4 (DLL4) in PAH pathogenesis. Through integrated analysis of multiple data sets, we identified 6 candidate differentially expressed genes (DEGs), notably , which showed the highest distinguishing efficiency between PAH and control samples. Functional and pathway enrichment analyses revealed the involvement of in critical biological processes and pathways related to PAH, including notch signaling, immune cell function, and inflammatory responses.

View Article and Find Full Text PDF

Background: Angiogenesis and cancer metastasis depend on the DLL4/Notch signaling pathway. A new approach to treating angiogenesis could inhibit or block this pathway. In the present study, we investigated DLL4 expression as a biomarker capable of predicting survival outcomes in gastric cancer patients using a novel anti-DLL4 Nanobody.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!