Distinct magnetic dynamic behavior for two polymorphs of the same Dy(III) complex.

Chem Commun (Camb)

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, PR China.

Published: June 2011

Two polymorphs of the same Dy(III) complex show distinct slow magnetic relaxation behaviors due to the different local environments of Dy(III) in the crystal. This work represents the first example where the magnetic dynamic property of neutral rare earth complexes could be tuned by growing polymorphic crystals without changing the ligand.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1cc11659bDOI Listing

Publication Analysis

Top Keywords

magnetic dynamic
8
polymorphs dyiii
8
dyiii complex
8
distinct magnetic
4
dynamic behavior
4
behavior polymorphs
4
complex polymorphs
4
complex distinct
4
distinct slow
4
slow magnetic
4

Similar Publications

Indirect Detection of the Protons in and around Biradicals and their Mechanistic Role in MAS-DNP.

J Phys Chem Lett

January 2025

National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, Florida 32310, United States.

The contribution of protons in or near biradical polarizing agents in Dynamic Nuclear Polarization (DNP) has recently been under scrutiny. Results from selective deuteration and simulations have previously suggested that the role of protons in the biradical molecule depends on the strength of the electron-electron coupling. Here we use the cross effect DNP mechanism to identify and acquire H solid-state NMR spectra of the protons that contribute to propagation of the hyperpolarization, via an experimental approach dubbed Nuclear-Nuclear Double Resonance (NUDOR).

View Article and Find Full Text PDF

Simultaneous Concentration and T Mapping of Brain Metabolites by Fast Multi-Echo Spectroscopic Imaging.

NMR Biomed

February 2025

MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland.

The purpose of this study was to produce metabolite-specific T and concentration maps in a clinically compatible time frame. A multi-TE 2D MR spectroscopic imaging (MRSI) experiment (multi-echo single-shot MRSI [MESS-MRSI]) deployed truncated and partially sampled multi-echo trains from single scans and was combined with simultaneous multiparametric model fitting. It was tested in vivo for the brain in five healthy subjects.

View Article and Find Full Text PDF

Background: Microvascular dysfunction (MVD) is a recognized sign of disease in heart failure progression. Intact blood vessels exhibit abnormal vasoreactivity in early stage, subsequently deteriorating to rarefaction and reduced perfusion. In managing heart failure with preserved ejection fraction (HFpEF), earlier diagnosis is key to improving management.

View Article and Find Full Text PDF

Reorganization of Dynamic Network in Stroke Patients and Its Potential for Predicting Motor Recovery.

Neural Plast

January 2025

Department of Neurology, The Fifth Affiliated hospital of Guangxi Medical University, The First People's Hospital of Nanning, Nanning, China.

The investigation of brain functional network dynamics offers a promising approach to understanding network reorganization poststroke. This study aims to explore the dynamic network configurations associated with motor recovery in stroke patients and assess their predictive potential using multilayer network analysis. Resting-state functional magnetic resonance imaging data were collected from patients with subacute stroke within 2 weeks of onset and from matched healthy controls (HCs).

View Article and Find Full Text PDF

Carrier-Induced Room-Temperature Half-Metallicity in an Exfoliable Two-Dimensional Cr(TCNB) Metal-Organic Framework.

J Phys Chem Lett

January 2025

Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.

Half-metallicity, enabling 100% spin polarization, is pivotal for spintronics but remains challenging to achieve in low-dimensional materials. Using first-principles calculations, we theoretically propose an experimentally feasible two-dimensional (2D) metal-organic framework (MOF) magnetic semiconductor, Cr(TCNB) (TCNB = 1,2,4,5-tetracyanobenzene). This monolayer can be exfoliated from a Ag(100) substrate due to its low exfoliation energy of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!