The structure of the CH(2)ClF···HCCH dimer has been determined using both chirped-pulse and resonant cavity Fourier-transform microwave spectroscopy. The complex has C(s) symmetry and contains both a double C-H···π interaction, in which one π-bond acts as acceptor to two hydrogen atoms from the CH(2)ClF donor, and a weak C-H···Cl interaction, with acetylene as the donor. Analysis of the rotational spectra of four isotopologues (CH(2)(35)ClF···H(12)C(12)CH, CH(2)(37)ClF···H(12)C(12)CH, CH(2)(35)ClF···H(13)C(13)CH, and CH(2)(37)ClF-H(13)C(13)CH) has led to a structure with C-H···π distances of 3.236(6) Å and a C-H···Cl distance of 3.207(22) Å, in good agreement with ab initio calculations at the MP2/6-311++G(2d,2p) level. Both weak contacts are longer than those observed in similar complexes containing a single C-H···π interaction that lies in the C(s) plane; however, this appears to be the first double C-H···π contact to be studied by microwave spectroscopy, so there is little data for direct comparison. The rotational and chlorine nuclear quadrupole coupling constants for the most abundant isotopologue are: A = 5262.899(14) MHz, B = 1546.8074(10) MHz, C = 1205.4349(7) MHz, χ(aa) = 28.497(5) MHz, χ(bb) = -65.618(13) MHz, and χ(cc) = 37.121(8) MHz.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1cp20684b | DOI Listing |
Rep Prog Phys
January 2025
SISSA, via Bonomea 265, 34136 Trieste, Trieste, 34136, ITALY.
We review recent progress regarding the double scaled Sachdev-Ye-Kitaev model and other p-local quantum mechanical random Hamiltonians. These models exhibit an expansion using chord diagrams, which can be solved by combinatorial methods. We describe exact results in these models, including their spectrum, correlation functions, and Lyapunov exponent.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Background: Alzheimer's disease (AD), the leading cause of dementia, is characterized by cognitive decline and the accumulation of amyloid-β (Aβ). It affects millions, with numbers expected to double by 2050. SMOC2, implicated in inflammation and fibrosis, may play a role in AD pathogenesis, particularly in microglial cell function, offering a potential therapeutic target.
View Article and Find Full Text PDFEClinicalMedicine
January 2025
Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark.
Background: Diabetic gastroenteropathy is associated with nausea, vomiting, bloating, pain, constipation, and diarrhoea. Current therapies are scarce. We tested faecal microbiota transplantation (FMT) for patients with type 1 diabetes and gastroenteropathy.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA.
Nile blue has been widely used in histological staining, fluorescence labeling, and DNA probing, with its intercalation behavior into the DNA helix being well documented. Here, we present a comprehensive investigation to address a current knowledge gap regarding the binding properties of Nile blue to two types of double-stranded RNA (dsRNA): poly(A·U) and poly(I·C), using various biophysical techniques. Absorption and fluorescence spectroscopic studies suggest a significant binding interaction between Nile blue and the two designated dsRNAs, specifically indicating an intercalation binding mode with poly(A·U) and demonstrating a noticeably higher binding affinity compared to poly(I·C).
View Article and Find Full Text PDFIn biological systems, heme-copper oxidase (HCO) enzymes play a crucial role in the oxygen reduction reaction (ORR), where the pivotal O-O bond cleavage of the (heme)Fe-peroxo-Cu intermediate is facilitated by active-site (peroxo core) hydrogen bonding followed by proton-coupled electron transfer (PCET) from a nearby (phenolic) tyrosine residue. A useful approach to comprehend the fundamental relationships among H-bonding/proton/H-atom donors and their abilities to induce O-O bond homolysis involves the investigation of synthetic, bioinspired model systems where the exogenous substrate properties (such as p and bond dissociation energy (BDE)) can be systematically altered. This report details the reactivity of a heme-peroxo-copper HCO model complex (LS-4DCHIm) toward a series of substituted catechol substrates that span a range of p and O-H bond BDE values, exhibiting different reaction mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!