The present study illustrates the importance of the oxidation state of iron within the mesoporous iron trimesate [{Fe(3)O(H(2)O)(2)F(0.81)(OH)(0.19)}{C(6)H(3)(CO(2))(3)}(2)] denoted MIL-100(Fe) (MIL= Material from Institut Lavoisier) during adsorption of molecules that can interact with the accessible metal sites through π-back donation. Adsorption of CO has been first followed by FTIR spectroscopy to quantify the Lewis acid sites in the dehydrated Fe(III) sample, outgassed at 150 °C, and on the partially reduced Fe(II/III), outgassed at 250 °C. The exposure of MIL-100(Fe) to CO(2), propane, propene and propyne has then been studied by FTIR spectroscopy and microcalorimetry. It appears that π-back donating molecules are strongly adsorbed on reduced iron(II) sites despite the weaker Lewis acidity of cus Fe(2+) sites compared to that of Fe(3+) ones, as shown by pyridine adsorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1cp20502a | DOI Listing |
Langmuir
January 2025
School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, MH 416004, India.
In this study, we report the modification of a monolithic γ-aluminum oxy-hydroxide (γ-AlOOH) aerogel with cellulose nanofibers (CNFs) using the sol-gel method via supercritical drying. The optimized 2% CNF (w/w) results in a monolithic CNF-γ-AlOOH that is amorphous in nature, along with C-C and C-O-C functional groups. Transmission electron microscopy (TEM) images of the as-synthesized CNF-γ-AlOOH showed CNF embedded in the γ-AlOOH aerogel.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
In this study, a distinctive multiple core-shell structure of Co nanoparticles inserted into N-doped carbon dodecahedron@Co hydroxide (Co/NCD@Co(OH)) was synthesized a spontaneous redox reaction between metallic Co and NO, ultimately materializing the fine dispersion and exposure of the active sites. The electronic interaction existing between the Co/NCD core and the Co(OH) shell brings a synergistic effect, conspicuously lessens the overpotential, and reinforces the yield-rate and faradaic efficiency of NH for electrochemical nitrate-ammonia conversion. This study underlines the spontaneous redox between the catalysts and substrate, rendering it as a synthetic strategy for designing genuine and well-dispersed active sites.
View Article and Find Full Text PDFInorg Chem
January 2025
Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China.
Two novel 3D inorganic-organic hybrids based on [VO]/[VO] clusters, [Cu(bbpy)(VO)]·3HO () and [CuAg(pty)(VO)]·HO () (bbpy = 3,5-bis(1-benzimidazole) pyridine, pty = 4'-(4″-pyridyl)-2,2':6',2″-terpyridine), were isolated in the same POV/Cu/N-heterocycle ligand reaction systems. Hybrids and possess novel three-dimensional bimetallic frameworks derived from [VO]/[VO] clusters and Cu-organic complexes. In , bbpy ligands are grafted by Cu to a grid ribbon 2D sheet, which are connected with benzene-like [VO] to yield a 3D framework.
View Article and Find Full Text PDFACS Nano
January 2025
Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
Unlike homogeneous metal complexes, achieving absolute control over reaction selectivity in heterogeneous catalysts remains a formidable challenge due to the unguided molecular adsorption/desorption on metal-surface sites. Conventional organic surface modifiers or ligands and rigid inorganic and metal-organic porous shells are not fully effective. Here, we introduce the concept of "ligand-porous shell cooperativity" to desirably reaction selectivity in heterogeneous catalysis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CEITEC-Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic.
Detailed atomic-scale understanding is a crucial prerequisite for rational design of next-generation single-atom catalysts (SACs). However, the sub-ångström precision needed for systematic studies is challenging to achieve on common SACs. Here, we present a two-dimensional (2D) metal-organic system featuring Fe-N single-atom sites, where the metal-organic structure is modulated by 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!