To study the contribution of the protease-sensitive loop of the VSV M protein in virus assembly we recovered recombinant VSV (rVSV) with mutations in this region and examined virus replication. Mutations in the highly conserved LXD motif (aa 123-125) resulted in reduced virion budding, reduced virus titers and enhanced M protein exchange with M-ribonucleocapsid complexes (M-RNPs), suggesting that the mutant M proteins were less tightly associated with RNP skeletons. In addition, viral protein synthesis began to decrease at 4h post-infection (hpi) and was reduced by ~80% at 8 hpi for the mutant rVSV-D125A. The reduced protein synthesis was not due to decreased VSV replication or transcription; however, translation of a reporter gene with an EMCV IRES was not reduced, suggesting that cap-dependent, but not cap-independent translation initiation was affected in rVSV-D125A infected cells. These results indicate that the LXD motif is involved in both virus assembly and VSV protein translation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2011.04.013DOI Listing

Publication Analysis

Top Keywords

virus assembly
12
protease-sensitive loop
8
involved virus
8
protein translation
8
vsv protein
8
lxd motif
8
protein synthesis
8
protein
7
virus
6
reduced
5

Similar Publications

Despite the recent surge of viral metagenomic studies, it remains a significant challenge to recover complete virus genomes from metagenomic data. The majority of viral contigs generated from de novo assembly programs are highly fragmented, presenting significant challenges to downstream analysis and inference. To address this issue, we have developed Virseqimprover, a computational pipeline that can extend assembled contigs to complete or nearly complete genomes while maintaining extension quality.

View Article and Find Full Text PDF

The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites.

View Article and Find Full Text PDF

Nudiviruses (family ) are double-stranded DNA viruses that infect various insects and crustaceans. Among them, Heliothis zea nudivirus 1 (HzNV-1) represents the rare case of a lepidopteran nudivirus inducing a sexual pathology. Studies about molecular pathological dynamics of HzNV-1 or other nudiviruses are scarce.

View Article and Find Full Text PDF

Solid-state nanopore is a promising single molecular detection technique, but is largely limited by relatively low resolution to small-size targets and laborious design of signaling probes. Here we establish a universal, CRISPR/Cas-Assisted Nanopore Operational Nexus (CANON), which can accurately transduce different targeting sources/species into different DNA structural probes via a "Signal-ON" mode. Target recognition activates the cleavage activity of a Cas12a/crRNA system and then completely digest the blocker of an initiator.

View Article and Find Full Text PDF

Duck viral hepatitis (DVH) caused by duck hepatitis A virus (DHAV) is a highly contagious and economically important disease of ducklings worldwide. In many parts of the globe, disease outbreaks are reported in spite of vaccinations, probably due to antigenic diversity among DHAV genotypes. We previously reported the first isolation of DHAV-2 (Genotype -2) from ducklings in Tamil Nadu, India.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!