Diffusion tensor imaging (DTI) permits non-invasive probing of tissue microstructure and provides invaluable information in brain diagnostics. Our aim was to examine approaches capable of capturing more detailed information on the propagation mechanisms and underlying tissue microstructure in comparison to the conventional methods. In this work, we report a detailed in vivo diffusion study of the human brain in an extended range of the b-factors (up to 7000 s mm(-2)) performed on a group of 14 healthy volunteers at 3T. Combined diffusion kurtosis imaging (DKI) and biexponential diffusion tensor analysis (BEDTA) were applied to quantify the attenuation curves. New quantitative indices are suggested as map parameters and are shown to improve the underlying structure contrast in comparison to conventional DTI. In particular, fractional anisotropy maps related to the slow diffusion tensor are shown to attain significantly higher values and to substantially improve white matter mapping. This is demonstrated for the specified regions of the frontal and occipital lobes and for the anterior cingulate. The findings of this work are substantiated by the statistical analysis of the whole slice histograms averaged over 14 subjects. Colour-coded directional maps related to the fast and slow diffusion tensors in human brain tissue are constructed for the first time and these demonstrate a high degree of axial co-alignment of the two tensors in the white matter regions. It is concluded that a combined DKI and BEDTA offers a promising framework for monitoring tissue alteration during development and degeneration or as a consequence of the neurological disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2011.04.050 | DOI Listing |
Curr Pain Headache Rep
January 2025
Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
Purpose Of Review: Trigeminal neuralgia (TN) is a highly heterogeneous condition with a wide choice of successful treatment options. However, differences between subtypes are poorly understood and it remains unknown which patients will respond to different treatments. This review aims to summarize the current state of the TN field and explore the problem of predicting surgical outcomes.
View Article and Find Full Text PDFRadiologie (Heidelb)
January 2025
Department of Radiology, Bezmialem Vakıf University, Istanbul, Turkey.
Purpose: To determine whether there is a difference in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values in white matter pathways in the subacute period after COVID-19 infection and to evaluate the correlation between diffusion tensor imaging (DTI) metrics and laboratory findings.
Material And Methods: The study included 64 healthy controls and 91 patients. Patients were classified as group 1 (all patients, n = 91), group 2 (outpatients, n = 58), or group 3 (inpatients, n = 33).
Brain
January 2025
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
Although the pathophysiology of migraine involves a complex ensemble of peripheral and central nervous system changes that remain incompletely understood, the activation and sensitization of the trigeminovascular system is believed to play a major role. However, non-invasive, in vivo neuroimaging studies investigating the underlying neural mechanisms of trigeminal system abnormalities in human migraine patients are limited. Here, we studied 60 patients with migraine (55 females, mean age ± SD: 36.
View Article and Find Full Text PDFNeuropsychiatr Dis Treat
January 2025
Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, People's Republic of China.
Background: The clinical pictures of essential tremor (ET) and Parkinson's disease (PD) are often quite mimic at the early stage, and longstanding ET may ultimately develop to PD, that is, PD with "antecedent ET". Early diagnosis and differentiation of the two are essential for predicting disease progression and formulating individualized treatment plans. However, current approaches remain challenging.
View Article and Find Full Text PDFActa Radiol
January 2025
Radiology Department, Third Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR China.
Background: Cerebral infarction is one of the most common diseases. Diffusion tensor imaging (DTI) has been used to evaluate for crossed cerebellar diaschisis (CCD) to observe the expression of repulsive guidance molecule a (RGMa), the axonal regeneration as well as the effect on neural functional recovery in the middle cerebral artery occlusion (MCAO) rat model.
Purpose: To certify the expression pattern of RGMa in cerebral infarction and the mechanism of CCD to provide a new target for clinical therapy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!