We have previously described the establishment and characterization of a stably transfected insect cell line for the constitutive and efficient expression of Pr55 HIV Gag proteins, which auto-assemble into enveloped Virus-Like Particles (VLPs) released into the cell culture supernatant. Such HIV-Gag VLPs have been shown to elicit a specific systemic humoral response in vivo, proving the appropriate antigenic presentation of the HIV Gag protein to the immune system. Here we describe the establishment of a stable double transfected insect cell line for the constitutive and reproducible production of Pr55Gag-VLPs expressing on their surface trimeric forms of HIV-1 envelope glycoproteins. The persistence of HIV coding genes has been verified in clonal resistant insect cells, the protein expression and conformation has been verified by Western blot analysis. The resulting HIV-VLPs have been visualized by standard transmission electron microscopy and their immunogenicity has been evaluated in vivo. This represents, to our knowledge, the first example of stable double transfected insect cell line for the constitutive production of enveloped HIV-Gag VLPs presenting trimeric HIV-gp140 on their surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2011.05.004 | DOI Listing |
Int J Mol Sci
December 2024
Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Osaka 920-1192, Japan.
G protein-coupled receptors (GPCRs) are essential cell surface proteins involved in transducing extracellular signals into intracellular responses, regulating various physiological processes. This study validated the use of the Tango assay, a sensitive method for detecting GPCR activation, in Schneider 2 (S2) cells, focusing on the human Dopamine Receptor D4 (DRD4). Plasmids encoding the LexA-tagged human DRD4 receptor and a luciferase reporter were co-transfected into S2 cells and stimulated with dopamine.
View Article and Find Full Text PDFInsect Sci
December 2024
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China.
Fungal pathogens produce secretory ribonuclease (RNase) T2 proteins during infection, which contribute to fungal virulence via their enzyme functions in degradation of host cell RNA. However, the details of those proteins entering the host cells are unclear. Our previous study demonstrated that the two secretory RNase T2 members, BbRNT2 and BbTrv, produced by the insect fungal pathogen Beauveria bassiana, caused cytotoxic damage to insect cells and contributed to fungal virulence.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany.
PLoS One
December 2024
Department of Entomology, Texas A&M AgriLife, Texas A&M University, College Station, TX, United States of America.
Flaviviruses are a diverse group of RNA viruses known for their significant impact on human health worldwide. We generated a series of reporters that included cleavage sequences from the dengue virus type 2 polyprotein and co-transfected with plasmids encoding various flavivirus proteases into Aedes aegypti cells, followed by fluorescent imaging and western blot analysis for the determination of proteolytic cleavage. Recombinant flavivirus NS2B3 proteases from medically significant and insect-specific flaviviruses were able to process reporters encoding cleavage sequences from the dengue virus type 2 polyprotein in vitro including proteases from dengue virus types 1-4, Zika virus, yellow fever virus, Aedes flavivirus, and cell-fusing agent virus.
View Article and Find Full Text PDFPathogens
October 2024
College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
viral hemorrhagic disease (McVHD), caused by the hemorrhagic disease virus (McHDV), is an acute and highly fatal infectious disease of musk deer. At present, there is no prevention or treatment for this disease. In this study, we constructed a recombinant bacmid containing the gene and obtained the recombinant baculovirus rBac-McHDV VP60 by transfection into Sf9 () insect cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!