Background: The diffusion and reaction of the transmitter acetylcholine in neuromuscular junctions and the diffusion and binding of Ca2+ in the dyadic clefts of ventricular myocytes have been extensively modeled by Monte Carlo simulations and by finite-difference and finite-element solutions. However, an analytical solution that can serve as a benchmark for testing these numerical methods has been lacking.
Result: Here we present an analytical solution to a model for the diffusion and reaction of acetylcholine in a neuromuscular junction and for the diffusion and binding of Ca2+ in a dyadic cleft. Our model is similar to those previously solved numerically and our results are also qualitatively similar.
Conclusion: The analytical solution provides a unique benchmark for testing numerical methods and potentially provides a new avenue for modeling biochemical transport.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093673 | PMC |
http://dx.doi.org/10.1186/2046-1682-4-5 | DOI Listing |
Anal Chem
January 2025
Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea.
Cyclic voltammetry (CV) has been a powerful technique to provide impactful insights for electrochemical systems, including reaction mechanism, kinetics, diffusion coefficients, etc., in various fields of study, notably energy storage and energy conversion. However, the separation between the faradaic current component of CV and the nonfaradaic current contribution to extract useful information remains a major issue for researchers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tsinghua University, Tsinghua Shenzhen International Graduate School, CHINA.
The crosstalk of transition metal ions between the metal oxide cathode and Zn anode restricts the practical applications of aqueous zinc-ion batteries (ZIBs). Herein, we propose a decoupled electrolyte (DCE) consisting of a nonaqueous-phase (N-phase) anolyte and an aqueous-phase (A-phase) catholyte to prevent the crosstalk of Mn2+, thus extending the lifespan of MnO2-based ZIBs. Experimental measurements and theoretical modelling verify that trimethyl phosphate (TMP) not only synergistically works with NH4Cl in the N-phase anolyte to enable fast Zn2+ conduction while block Mn2+ diffusion toward anode, but also modifies the Zn2+ solvation structure to suppress the dendrite formation and corrosion on Zn anode.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
KAIST - Korea Advanced Institute of Science and Technology, Department of Chemistry, Center for Nanomaterials and Chemical Reaction, IBS, 373-1, Guseong Dong, Yuseong Gu, 305-701, Daejeon, KOREA, REPUBLIC OF.
Understanding how TiO2 interacts with CO2 at the molecular level is crucial in the CO2 reduction toward value-added energy sources. Here, we report in-situ observations of the CO2 activation process on the reduced TiO2(110) surface at room temperature using ambient pressure scanning tunneling microscopy. We found that oxygen vacancies (Vo) diffuse dynamically along the bridging oxygen (Obr) rows of the TiO2(110) surface under ambient CO2(g) environments.
View Article and Find Full Text PDFNat Commun
January 2025
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States.
Self-organization under out-of-equilibrium conditions is ubiquitous in natural systems for the generation of hierarchical solid-state patterns of complex structures with intricate properties. Efforts in applying this strategy to synthetic materials that mimic biological function have resulted in remarkable demonstrations of programmable self-healing and adaptive materials. However, the extension of these efforts to multifunctional stimuli-responsive solid-state materials across defined spatial distributions remains an unrealized technological opportunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!