Squaraines have been known for many decades as very stable and versatile vis-NIR absorbing dyes. They have found applications for example as sensitizers in organic photovoltaics and photodetectors. The most common squaraine structure is the 1,3-regioisomer. Their 1,2-regioisomers are seldom mentioned and unanimously regarded as side products. A facile direct synthesis of 1,2-squaraines, highlighting the role played by reaction conditions and electronic factors, is described. The first electrochemical characterization of these dyes is also shown.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ol201093t | DOI Listing |
Chemistry
January 2025
Institute of Organic Chemistry PAS: Instytut Chemii Organicznej Polskiej Akademii Nauk, Institute of Organic Chemistry, Kasprzaka 44/52, 01-224, Warsaw, POLAND.
Herein, we report the synthesis and chiroptical characteristics of the first (double) helicenes possesing the 1,4-dihydropyrrolo[3,2-b]pyrrole (DHPP) moiety as their central core. We have developed a three-step synthesis with 6π-electrocyclization accompanied with HBr elimination as its key step. We found that, whereas for smaller periphereal arms double 6π-electrocyclization occurs smoothly forming a double helicene, in the case of longer policyclic aromatic hydrocarbons the reaction becomes less efficient and mono-helicenes are the only products.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States.
ConspectusThe manipulation of strained rings is a powerful strategy for accessing the valuable chemical frameworks present in natural products and active pharmaceutical ingredients. Aziridines, the smallest N-containing heterocycles, have long served as building blocks for constructing more complex amine-containing scaffolds. Traditionally, the reactivity of typical aziridines has been focused on ring-opening by nucleophiles or the formation of 1,3-dipoles.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
Allylic ethers and alcohols are essential structural motifs commonly present in natural products and pharmaceuticals. Direct allylic C-H oxygenation of internal alkenes is one of the most direct methods, bypassing the necessity for an allylic leaving group that is needed in the traditional Tsuji-Trost reaction. Herein, we develop an efficient and practical method for synthesizing (E)-allyl ethers from readily available internal alkenes and alcohols or phenols via selective allylic C-H oxidation.
View Article and Find Full Text PDFAcc Chem Res
January 2025
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
ConspectusIn recent years, our research group has dedicated significant effort to the field of asymmetric organometallic electrochemical synthesis (AOES), which integrates electrochemistry with asymmetric transition metal catalysis. On one hand, we have rationalized that organometallic compounds can serve as molecular electrocatalysts (mediators) to reduce overpotentials and enhance both the reactivity and selectivity of reactions. On the other hand, the conditions for asymmetric transition metal catalysis can be substantially improved through electrochemistry, enabling precise modulation of the transition metal's oxidation state by controlling electrochemical potentials and regulating the electron transfer rate via current adjustments.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States.
Under most conditions, 2,4-dihalopyrimidines undergo substitution reactions at C4. Here we report that Pd(II) precatalysts supported by bulky -heterocyclic carbene ligands uniquely effect C2-selective cross-coupling of 2,4-dichloropyrimidine with thiols. The regioselectivity of this reaction stands in stark contrast to ∼1500 previously reported Pd-catalyzed cross-couplings that favor C4 in the absence of other substituents on the pyrimidine ring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!