Background: Beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), is a major pest of numerous cultivated crops. Chlorantraniliprole, the first commercialised ryanodine receptor insecticide from the anthranilic diamide class, has exceptional insecticidal activity on a range of lepidopteran pests. The aim of this study was to assess the resistance of S. exigua to chlorantraniliprole in the laboratory.

Results: A field-collected population of S. exigua was selected after repeated exposure to chlorantraniliprole to determine the risk of resistance evolution. After 22 generations of selection, there was a 12.0-fold increase in LC(50) . The realised heritability (h(2)) of resistance was estimated as 0.1082 by using threshold trait analysis. The projected rate of resistance evolution indicated that, if h(2) = 0.1082 and 70% of the population was killed at each generation, then a tenfold increase in LC(50) would be expected in 21.7 generations for chlorantraniliprole.

Conclusion: These results show that the risk of resistance development to chlorantraniliprole exists in S. exigua after continuous application.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.2201DOI Listing

Publication Analysis

Top Keywords

spodoptera exigua
8
exigua hübner
8
hübner lepidoptera
8
lepidoptera noctuidae
8
risk resistance
8
resistance evolution
8
increase lc50
8
exigua
5
chlorantraniliprole
5
resistance
5

Similar Publications

Proteomic Variation in the Oral Secretion of Spodoptera exigua and Spodoptera littoralis Larvae in Response to Different food Sources.

J Chem Ecol

January 2025

Biotechnological Control of Pests Laboratory, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, 46100, Spain.

The Spodoptera genus is defined as the pest-rich genus because it contains some of the most destructive lepidopteran crop pests, characterized by a wide host range. During feeding, the caterpillars release small amounts of oral secretion (OS) onto the wounded leaves. This secretion contains herbivore-induced molecular patterns (HAMPs) that activate the plant defense response, as well as effectors that may inhibit or diminish the plant's anti-herbivory response.

View Article and Find Full Text PDF

Sphingolipid remodeling in the plasma membrane is essential for osmotic stress tolerance in Arabidopsis.

Plant Physiol

January 2025

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P R China.

Osmotic stress caused by drought, salinity, or cold conditions is an important abiotic factor that decreases membrane integrity and causes cell death, thus decreasing plant growth and productivity. Remodeling cell membrane composition via lipid turnover can counter the loss of membrane integrity and cell death caused by osmotic stress. Sphingolipids are important components of eukaryotic membrane systems; however, how sphingolipids participate in plant responses to osmotic stress remains unclear.

View Article and Find Full Text PDF

Stress-induced plant volatiles play an important role in mediating ecological interactions between plants and their environment. The timing and location of the inflicted damage is known to influence the quality and quantity of induced volatile emissions. However, how leaf characteristics and herbivore feeding behaviour interact to shape volatile emissions is not well understood.

View Article and Find Full Text PDF

Background: Baculoviruses are ideal biological insecticides, providing long-lasting pest control and environmental benefits. Alphabaculovirus mabrassicae stains, with their broad host range, have been effective in agricultural pest management. Various A.

View Article and Find Full Text PDF

Seasonal Migratory Activity of the Beet Armyworm (Hübner) in the Tropical Area of China.

Insects

December 2024

The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

The beet armyworm (Hübner), a global pest, feeds on and affects a wide range of crops. Its long-distance migration with the East Asian monsoon frequently causes large-scale outbreaks in East and Southeast Asia. This pest mainly breeds in tropical regions in the winter season every year; however, few studies have investigated associations with its population movements in this region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!