Cell-free expression systems provide unique tools for understanding CFTR biogenesis because they reconstitute the cellular folding environment and are readily amenable to biochemical and pharmacological manipulation. The most common system for this purpose is rabbit reticulocyte lysate (RRL), supplemented with either canine pancreatic microsomes or semi-permeabilized cells, which has yielded important insights into the folding of CFTR and its individual domains. A common problem in such studies, however, is that biogenesis of large proteins such as CFTR is often inefficient due to low translation processivity, ribosome stalling, and/or premature termination. The first part of this chapter therefore describes parameters that affect in vitro translation of CFTR in RRL. We have found that CFTR expression is uniquely dependent upon 5'- and 3'-untranslated regions (UTRs) of the mRNA. Full-length CFTR expression can be markedly increased using mRNA lacking a 5'-cap analog (G(5')ppp(5')G), whereas the reverse usually holds for smaller proteins and individual CFTR domains. In the context of the full-length mRNA, translation was further stimulated by the presence of a long 3'-UTR. The second part of this chapter describes CFTR translation in lysates derived from cultured mammalian cells including human bronchial epithelial cells. Unfortunately, mammalian cell-derived lysates showed limited ability to sustain full-length CFTR synthesis. However, they provide a unique opportunity to examine specific CFTR domains (i.e., nucleotide-binding domain 1 and transmembrane domain 1) under conditions that more closely resemble the native folding environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-61779-117-8_16 | DOI Listing |
J Formos Med Assoc
January 2025
Department of Rehabilitation Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China. Electronic address:
Background: Osteoporosis fracture is a common and most serious complication of osteoporosis.
Hypothesis: This study sought to assess the level, the diagnostic potential, and the effect of circulating miR-4534 in osteoporotic fractures.
Methods: GSE74209 and GSE93883 were analyzed using GEO2R online tool for differentially expressed microRNAs in osteoporotic fractures.
BMJ Open
December 2024
Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
Introduction: Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, primarily affecting the respiratory and digestive systems. Respiratory rehabilitation techniques play a crucial role in managing pulmonary symptoms and maintaining lung function in CF patients. Although various techniques have been developed and applied, there is currently no globally recognised optimal respiratory rehabilitation regimen.
View Article and Find Full Text PDFLancet Respir Med
January 2025
University of Liverpool, Institute in the Park, Alder Hey Children's Hospital, Liverpool L12 2AP, UK. Electronic address:
J Cyst Fibros
January 2025
Department NEUROFARBA, University of Florence; Paediatric and Liver Unit, Meyer Children's Hospital IRCCS, Florence, Italy.
Background: Elexacaftor-tezacaftor-ivacaftor (ETI) has significantly improved the clinical course of people with cystic fibrosis (pwCF) and eligible CFTR variants. In this study, we prospectively evaluated liver elastography, liver fibrosis indices and liver tests in children with CF aged 6-12 years started on ETI therapy.
Methods: Body mass index, sweat test, percent predicted forced expiratory volume in one second, serum markers of liver injury or portal hypertension, liver fibrosis indices, controlled attenuation parameter and liver stiffness were assessed before starting ETI and three and twelve months post-ETI, according to new international guidelines.
J Cyst Fibros
January 2025
The Lundquist Institute, Harbor-UCLA Medical Center, Torrance 90502 CA, USA. Electronic address:
Background: Cystic Fibrosis-related Bone Disease is an emerging challenge faced by 50 % of adult people with cystic fibrosis (CF). The multifactorial causes of this comorbidity remain elusive. However, congenital bone defects have been observed in animal models with CFTR mutations, suggesting its importance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!