Purpose: PR-104 is activated by reductases under hypoxia or by aldo-keto reductase 1C3 (AKR1C3) to form cytotoxic nitrogen mustards. Hepatocellular carcinoma (HCC) displays extensive hypoxia and expresses AKR1C3. This study evaluated the safety and efficacy of PR-104 plus sorafenib in HCC.

Methods: Patients with advanced-stage HCC, Child-Pugh A cirrhosis, and adequate organ function, were assigned to dose escalating cohorts of monthly PR-104 in combination with twice daily sorafenib. The plasma pharmacokinetics (PK) of PR-104 and its metabolites were evaluated.

Results: Fourteen (11 men, 3 women) HCC patients: median age 60 years, ECOG 0-1, received PR-104 at two dose levels plus sorafenib. Six patients were treated at starting cohort of 770 mg/m(2). In view of one DLT of febrile neutropenia and prolonged thrombocytopenia, a lower PR-104 dose cohort (550 mg/m(2)) was added and accrued 8 patients. One patient had a partial response and three had stable disease of ≥8 weeks in the 770 mg/m(2) cohort. Three patients at the 550 mg/m(2) had stable disease. There were no differences in PK of PR-104 or its metabolites with or without sorafenib, but the PR-104A AUC was twofold higher (P < 0.003) than in previous phase I studies at equivalent dose.

Conclusions: PR-104 plus sorafenib was poorly tolerated in patients with advanced HCC, possibly because of compromised clearance of PR-104A in this patient population. Thrombocytopenia mainly and neutropenia were the most clinically significant toxicities and led to discontinuation of the study. PR-104 plus sorafenib is unlikely to be suitable for development in this setting.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00280-011-1671-3DOI Listing

Publication Analysis

Top Keywords

pr-104 sorafenib
16
pr-104
10
sorafenib patients
8
patients advanced
8
hepatocellular carcinoma
8
pr-104 metabolites
8
pr-104 dose
8
770 mg/m2
8
550 mg/m2
8
stable disease
8

Similar Publications

PR-104 is a clinical stage bioreductive prodrug that is converted in vivo to its cognate alcohol, PR-104A. This dinitrobenzamide mustard is reduced to activated DNA cross-linking metabolites (hydroxylamine PR-104H and amine PR-104M) under hypoxia by one-electron reductases and independently of hypoxia by the 2-electron reductase aldo-keto reductase 1C3 (AKR1C3). High expression of AKR1C3, along with extensive hypoxia, suggested the potential of PR-104 for treatment of hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Purpose: PR-104 is activated by reductases under hypoxia or by aldo-keto reductase 1C3 (AKR1C3) to form cytotoxic nitrogen mustards. Hepatocellular carcinoma (HCC) displays extensive hypoxia and expresses AKR1C3. This study evaluated the safety and efficacy of PR-104 plus sorafenib in HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!