Background: Adipogenous tissue derived stem cells (ASC) are available in abundance in the human body and can differentiate in the presence of lineage-specific induction factors, for example, in myogenic, adipogenic, chondrogenic and osteogenic cells. The aim of this study was to evaluate the impact of osteogenic induced ASC's (O-ASC) on revascularization and cellular repopulation of avital cortical bone employing a vascularized bovine scaffold.

Methods: An inguinal arterio-venous bundle was dissected in the groin of female white New Zealand rabbits (n = 6) and placed centrally inside an O-ASC seeded scaffold via a central drill hole. In the same surgical session this construct was placed into a segment of avital cortical bone allograft from a donor rabbit. Unseeded scaffolds that were implanted and treated in the same fashion served as controls (n = 6). In order to prevent external revascularization, all constructs were wrapped in silicon foil and finally implanted in the rabbits' groin. Three months later, the constructs were explanted and investigated for vascularization of (a) the scaffold (b) the surrounding bone allograft. Histological stainings to determine cell growth, cellular repopulation of the scaffold and the cortical bone matrix, as well as inflammatory parameters were carried out.

Results: O-ASC seeded scaffolds showed a significant increase in new vessel formation in the scaffold as well as in the bone allograft compared to unseeded scaffolds. Furthermore, new vital osteocytes as a sign of cellular repopulation inside the bone allograft were found only in the treatment group. Vital chondrocytes were only found in the O-ASC seeded scaffolds as well.

Conclusion: The presence of O-ASC significantly induce neo-vascularization and osteocytic repopulation of previously avital bone allograft as opposed to unseeded scaffolds in a rabbit model. Hence, this model might be of relevant value for future bone tissue engineering research and for re-vitalizing marginally nourished bone such as in avascular bone necrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00402-011-1306-5DOI Listing

Publication Analysis

Top Keywords

bone allograft
24
cortical bone
16
cellular repopulation
12
o-asc seeded
12
unseeded scaffolds
12
bone
11
osteogenic induced
8
tissue derived
8
derived stem
8
stem cells
8

Similar Publications

Cardiac allograft vasculopathy (CAV) remains a significant challenge after heart transplantation, necessitating effective surveillance methods. This review centers around the role of coronary computed tomography angiography (CCTA) in CAV surveillance, given its unique capabilities to visualize and quantify CAV in comparison with other imaging modalities, including invasive coronary angiography and intravascular ultrasound. CCTA has shown good diagnostic performance for detecting and monitoring CAV, exemplified by a higher sensitivity and negative predictive value compared with invasive coronary angiography.

View Article and Find Full Text PDF

The Masquelet technique that combines a foreign body reaction (FBR)-induced vascularized tissue membrane with staged bone grafting for reconstruction of segmental bone defect has gained wide attention in Orthopedic surgery. The success of Masquelet hinges on its ability to promote formation of a "periosteum-like" FBR-induced membrane at the bone defect site. Inspired by Masquelet's technique, here a novel approach is devised to create periosteum mimetics from decellularized extracellular matrix (dECM), engineered in vivo through FBR, for reconstruction of segmental bone defects.

View Article and Find Full Text PDF

Background: Paroxysmal nocturnal hemoglobinuria (PNH) is a rare complement-driven acquired hemolytic anemia with specific presentations of hemoglobinuria, abdominal pain, fatigue, and thrombosis.

Objective: To review the current therapeutic strategies for PNH, including anti-complement therapy and allogeneic hematopoietic cell transplantation (alloHCT), focusing on the tailoring of the approach to the disease subtype.

Results: The outcome of alloHCT varies depending on disease severity, thrombotic history, and response to prior therapies.

View Article and Find Full Text PDF

Background: Graft selection is an important part of preoperative planning for anterior cruciate ligament reconstruction (ACLR). In addition, ACLR with the remnant preservation technique has recently gained attention due to potential benefit in bone-tendon healing, graft revascularization, and proprioceptive nerve remodeling. However, the ideal graft choice remains controversial, and there is limited research comparing autograft and allograft in ACLR with remnant preservation.

View Article and Find Full Text PDF

Effects of a supercritical CO process on the mechanical properties and microarchitecture of trabecular bone using compression testing and microcomputed tomography.

J Mech Behav Biomed Mater

January 2025

Aix Marseille Univ, CNRS, ISM, 13009, Marseille, France; Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13009, Marseille, France.

Surgeons frequently use allograft bone due to its osteoconductive, osteoinductive, and osteogenic properties. Preservation processes are employed to clean the allograft, improve its conservation, and ensure its sterilization. Many current processes use the properties of supercritical CO to remove bone marrow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!