Rotating vortex solitons supported by localized gain.

Opt Lett

ICFO-Institut de Ciencies Fotoniques, and Universitat Politecnica de Catalunya, Mediterranean Technology Park, 08860, Castelldefels, Barcelona, Spain.

Published: May 2011

We show that ringlike localized gain landscapes imprinted in focusing cubic (Kerr) nonlinear media with strong two-photon absorption support new types of stable higher-order vortex solitons containing multiple phase singularities nested inside a single core. The phase singularities are found to rotate around the center of the gain landscape, with the rotation period being determined by the strength of the gain and the nonlinear absorption.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.36.001936DOI Listing

Publication Analysis

Top Keywords

vortex solitons
8
localized gain
8
phase singularities
8
rotating vortex
4
solitons supported
4
supported localized
4
gain
4
gain ringlike
4
ringlike localized
4
gain landscapes
4

Similar Publications

Engineering Polar Vortices via Strain Soliton Interactions in Marginally Twisted Multilayer Graphene.

Nano Lett

January 2025

National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, China.

Strain solitons have been widely observed in van der Waals materials and their heterostructures. They can manifest as one-dimensional (1D) wires and quasi-two-dimensional (2D) networks. However, their coexistence within the same region has rarely been observed, and their interplay remains unexplored.

View Article and Find Full Text PDF

Two-dimensional flat-band solitons in superhoneycomb lattices.

Nanophotonics

September 2024

Departamento de Física and Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, Lisboa 1749-016, Portugal.

Flat-band periodic materials are characterized by a linear spectrum containing at least one band where the propagation constant remains nearly constant irrespective of the Bloch momentum across the Brillouin zone. These materials provide a unique platform for investigating phenomena related to light localization. Meantime, the interaction between flat-band physics and nonlinearity in continuous systems remains largely unexplored, particularly in continuous systems where the band flatness deviates slightly from zero, in contrast to simplified discrete systems with exactly flat bands.

View Article and Find Full Text PDF

The existence of thresholdless vortex solitons trapped at the core of disclination lattices that realize higher-order topological insulators is reported. The study demonstrates the interplay between nonlinearity and higher-order topology in these systems, as the vortex state in the disclination lattice bifurcates from its linear topological counterpart, while the position of its propagation constant within the bandgap and localization can be controlled by its power. It is shown that vortex solitons are characterized by strong field confinement at the disclination core due to their topological nature, leading to enhanced stability.

View Article and Find Full Text PDF

We present an approach to generate stable vortex solitons (VSs) in rotating quasi-phase-matched photonic crystals with quadratic nonlinearity. The photonic crystal is introduced with a checkerboard structure, which can be realized using available technology. The VSs are constructed as four-peak vortex modes of two types: rhombuses and squares.

View Article and Find Full Text PDF

In this work, we investigate the dynamics and stability of two-dimensional (2D) vortex dipole, tripole, and quadrupole solitons with fundamental topological charge (m = 1) and higher topological charge (m > 1) in nonlocal nonlinearity with Gaussian potential well and barrier. Both analytical and numerical methods are applied to explore these vortex solitons. The analytical expressions are derived by utilizing the variational approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!