Ultrafast reciprocal space investigation of cavity-waveguide coupling.

Opt Lett

Center for Nanophotonics, FOM Institute for Atomic and Molecular Physics (AMOLF), Science Park 104, 1098 XG Amsterdam, The Netherlands.

Published: May 2011

Local information on the coupling mechanism between the photonic crystal nanocavity and the feeding waveguide is crucial to enable further improvements of the performance of these systems. Although several investigations on such a coupling have already been performed, information on the local dynamic properties remains hidden. Here, we present a reciprocal space investigation of the dynamics of light side-coupled to a photonic crystal nanocavity. We find that the coupling is promoted by Bloch harmonics having greater transverse momentum.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.36.001827DOI Listing

Publication Analysis

Top Keywords

reciprocal space
8
space investigation
8
photonic crystal
8
crystal nanocavity
8
ultrafast reciprocal
4
investigation cavity-waveguide
4
coupling
4
cavity-waveguide coupling
4
coupling local
4
local coupling
4

Similar Publications

Lingual Arch-supported Open Coil Space Regainer.

Int J Clin Pediatr Dent

December 2024

Department of Orthodontics and Dentofacial Orthopedics, JMF's ACPM Dental College, Dhule, Maharashtra, India.

Aim And Background: The lingual arch has been widely used as a space maintainer in the lower arch during the mixed dentition phase, and the open-coil space regainer (OCSR) has been used for localized space regaining. However, an appliance consisting of both has not been previously documented. This case report highlights the advantages of using a lingual-arch-supported OCSR for regaining lost space.

View Article and Find Full Text PDF

In situ X-ray reciprocal space mapping was performed during the interval heating and cooling of InGaN/GaN quantum wells (QWs) grown via metal-organic vapor phase epitaxy (MOVPE). Our detailed in situ X-ray analysis enabled us to track changes in the peak intensities and radial and angular broadenings of the reflection. By simulating the radial diffraction profiles recorded during the thermal cycle treatment, we demonstrate the presence of indium concentration distributions (ICDs) in the different QWs of the heterostructure (1.

View Article and Find Full Text PDF

Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.

View Article and Find Full Text PDF

Tetramethylammonium (TMA) is a ubiquitous cationic motif in biochemistry, found in the charged choline headgroup of membrane phospholipids and in tri-methylated lysine residues, which modulates histone-DNA interactions and impacts epigenetic mechanisms. TMA interactions with anionic species, particularly carboxylate groups of amino acid residues and extracellular sugars, are of substantial biological relevance, as these interactions mediate a wide range of cellular processes. This study investigates the molecular interactions between TMA and acetate, representing carboxylate-containing groups, using neutron scattering experiments complemented by force fields and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!