A new class of Fabry-Perot filters produced by a multilayer dielectric mirror deposited on top of a reflecting volume Bragg grating is described. The first fabricated prototype for the 852 nm region demonstrates a 30 pm bandwidth, 90+% transmission at resonance, and a good agreement with theoretical simulation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.36.001773DOI Listing

Publication Analysis

Top Keywords

fabry-perot filters
8
volume bragg
8
multilayer dielectric
8
single resonance
4
resonance monolithic
4
monolithic fabry-perot
4
filters formed
4
formed volume
4
bragg gratings
4
gratings multilayer
4

Similar Publications

Parallel generation of multi-channel chaos is critical to applications, and the key challenge is the simultaneous generation of broadband chaos with multiple channels and low correlation. Here, we experimentally demonstrate a parallel broadband chaos generation scheme using a single long-active-cavity Fabry-Perot (LC-FP) semiconductor laser under optical feedback. The active-cavity length is designed to be 1500 μm, so the power spectrum of chaos is expanded and flattened by the mode-beating effect.

View Article and Find Full Text PDF

Inverse design of compact silicon photonic waveguide reflectors and their application for Fabry-Perot resonators.

Nanophotonics

July 2024

Material and Component Research Division, Superintelligence creative Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon, 34129, Republic of Korea.

Silicon photonic waveguide resonators, such as microring resonators, photonic crystal waveguide cavities, and Fabry-Perot resonators based on the distributed Bragg reflectors, are key device components for silicon-based photonic integrated circuits (Si-PIC). For the Si-PIC with high integration density, the device footprints of the conventional photonic waveguide resonators need to be more compact. Inverse design, which is operated by the design expectation and different from the conventional design methods, has been investigated for reducing the photonic device components nowadays.

View Article and Find Full Text PDF

Efforts to increase the number of filters are driven by the demand for miniaturized spectrometers and multispectral imaging. However, processes that rely on sequential fabrication of each filter are cost ineffective. Herein, we introduce an approach to produce at least 16 distinct filters based on a single low-resolution lithographic step with minimum feature size of 0.

View Article and Find Full Text PDF
Article Synopsis
  • An external cavity diode laser (ECDL) was developed for applications in laser communication and precision measurement, optimized for around 780 nm wavelength.
  • The ECDL features an interference filter that allows for precise temperature and current control, achieving a continuous tuning range of 527 GHz and a low output linewidth of 570 Hz.
  • Compared to traditional lasers, the ECDL offers advantages like narrower linewidth, lower noise, higher spectral purity, and a compact design, measuring just 25 × 15 × 8.5 mm and weighing only 19.8 g.
View Article and Find Full Text PDF

This study presents a high-power, single-longitudinal-mode (SLM) fiber oscillator with a ring cavity design, operating at 1064 nm. Utilizing a double-cladding ytterbium-doped fiber as the gain medium, the system incorporates a fiber Bragg grating Fabry-Perot cavity and a dual coupler ring for step-by-step filtering to achieve SLM operation. With a pump power of 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!