The impact of a novel apolipoprotein E and amyloid-β protein precursor-interacting protein on the production of amyloid-β.

J Alzheimers Dis

Kings College London, MRC Centre for Neurodegeneration Research, Institute of Psychiatry, De Crespigny Park, London, UK.

Published: January 2012

Alzheimer's disease (AD) is characterized by disrupted metabolism of the amyloid-β protein precursor (AβPP) and deposition of a byproduct, the amyloid-β (Aβ) peptide, into plaques. AD is also genetically linked to the gene for apolipoprotein E (apoE). We have identified a novel apoE-binding protein (TMCC2) that also forms a complex with AβPP. TMCC2 is a neuronal, predominantly ER-localized, protein that co-migrated with AβPP during native gel electrophoresis of rat brain extracts, and co-immunoprecipitated with AβPP from transfected human cell lysates. TMCC2 bound apoE in an isoform-specific manner in vitro and co-immunoprecipitated with apoE from cell lysates. Co-expression of apoE and TMCC2 stimulated Aβ production from the "Swedish" variant of AβPP (K595 M/N596L) by up to 1.5-fold (p < 0.05), and also from the 99-amino acid C-terminal fragment of AβPP (AβPP-C99) that is the direct precursor to Aβ by 1.5- to 2-fold (p < 0.0005), this effect was greater with apoE4 than apoE3 (p = 0.02); both apoE3 and apoE4 stimulated a greater increase in Aβ1-42 than Aβ1-40 production from AβPP-C99 in the presence of TMCC2. The interaction between TMCC2 and apoE may therefore contribute to disrupted AβPP metabolism and altered Aβ production, as observed in AD.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-2011-102115DOI Listing

Publication Analysis

Top Keywords

amyloid-β protein
8
cell lysates
8
aβ production
8
aβpp
7
tmcc2
6
protein
5
apoe
5
impact novel
4
novel apolipoprotein
4
amyloid-β
4

Similar Publications

Solid-state nanopores offer unique possibilities for biomolecule sensing; however, scalable production of sub-5 nm pores with precise diameter control remains a manufacturing challenge. In this work, we developed a scalable method to fabricate sub-5 nm nanopores in silicon (Si) nanomembranes through metal-assisted chemical etching (MACE) using gold nanoparticles. Notably, we present a previously unreported self-limiting effect that enables sub-5 nm nanopore formation from both 10 and 40 nm nanoparticles in the 12 nm thick monocrystalline device layer of a silicon-on-insulator substrate.

View Article and Find Full Text PDF

Despite its importance in understanding biology and computer-aided drug discovery, the accurate prediction of protein ionization states remains a formidable challenge. Physics-based approaches struggle to capture the small, competing contributions in the complex protein environment, while machine learning (ML) is hampered by the scarcity of experimental data. Here, we report the development of p ML (KaML) models based on decision trees and graph attention networks (GAT), exploiting physicochemical understanding and a new experiment p database (PKAD-3) enriched with highly shifted p's.

View Article and Find Full Text PDF

Circulating ANGPTL3/8 Concentrations Are Associated With an Atherogenic Lipoprotein Profile and Increased CHD Risk in Swedish Population-Based Studies.

Arterioscler Thromb Vasc Biol

January 2025

Cardiovascular Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden. (A.S., R.M.F., F.M.v.H.).

Background: Binding of ANGPTL (angiopoietin-like protein)-3 to ANGPTL8 generates a protein complex (ANGPTL3/8) that strongly inhibits LPL (lipoprotein lipase) activity, as compared with ANGPTL3 alone, suggesting that ANGPTL3/8 concentrations are critical for the regulation of circulation lipoprotein concentrations and subsequent increased coronary heart disease (CHD) risk. To test this hypothesis in humans, we evaluated the associations of circulating free ANGPTL3 and ANGPTL3/8 complex concentrations with lipoprotein concentrations and CHD risk in 2 prospective cohort studies.

Methods: Fasting blood samples were obtained in conjunction with the baseline evaluation of 9479 subjects from 2 population-based Swedish cohorts of middle-aged men and women.

View Article and Find Full Text PDF

XOR-Derived ROS in Tie2-Lineage Cells Including Endothelial Cells Promotes Aortic Aneurysm Progression in Marfan Syndrome.

Arterioscler Thromb Vasc Biol

January 2025

Department of Cardiovascular Medicine, The University of Tokyo, Bunkyo-ku, Japan. (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.).

Background: Marfan syndrome (MFS) is an inherited disorder caused by mutations in the gene encoding fibrillin-1, a matrix component of extracellular microfibrils. The main cause of morbidity and mortality in MFS is thoracic aortic aneurysm and dissection, but the underlying mechanisms remain undetermined.

Methods: To elucidate the role of endothelial XOR (xanthine oxidoreductase)-derived reactive oxygen species in aortic aneurysm progression, we inhibited in vivo function of XOR either by endothelial cell (EC)-specific disruption of the gene or by systemic administration of an XOR inhibitor febuxostat in MFS mice harboring the missense mutation p.

View Article and Find Full Text PDF

Objective: To evaluate the short-term efficacy and safety of eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria (PNH) in China.

Method: Data were retrospectively collected from patients with PNH who received at least 3 months of full-dose eculizumab. Changes in clinical and laboratory indicators after 1, 3, and 6 months of eculizumab therapy and at the end of follow-up were documented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!