Motivation: Next generation sequencing technology generates high-throughput data, which allows us to detect fusion genes at both transcript and genomic levels. To detect fusion genes, the current bioinformatics tools heavily rely on paired-end approaches and overlook the importance of reads that span fusion junctions. Thus there is a need to develop an efficient aligner to detect fusion events by accurate mapping of these junction-spanning single reads, particularly when the read gets longer with the improvement in sequencing technology.
Results: We present a novel method, FusionMap, which aligns fusion reads directly to the genome without prior knowledge of potential fusion regions. FusionMap can detect fusion events in both single- and paired-end datasets from either RNA-Seq or gDNA-Seq studies and characterize fusion junctions at base-pair resolution. We showed that FusionMap achieved high sensitivity and specificity in fusion detection on two simulated RNA-Seq datasets, which contained 75 nt paired-end reads. FusionMap achieved substantially higher sensitivity and specificity than the paired-end approach when the inner distance between read pairs was small. Using FusionMap to characterize fusion genes in K562 chronic myeloid leukemia cell line, we further demonstrated its accuracy in fusion detection in both single-end RNA-Seq and gDNA-Seq datasets. These combined results show that FusionMap provides an accurate and systematic solution to detecting fusion events through junction-spanning reads.
Availability: FusionMap includes reference indexing, read filtering, fusion alignment and reporting in one package. The software is free for noncommercial use at (http://www.omicsoft.com/fusionmap).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btr310 | DOI Listing |
J Clin Invest
January 2025
Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, United States of America.
Although nucleoporin 98 (NUP98) fusion oncogenes often drive aggressive pediatric leukemia by altering chromatin structure and expression of HOX genes, underlying mechanisms remain elusive. Here, we report that a Hoxb-associated lncRNA HoxBlinc was aberrantly activated in NUP98-PHF23 fusion-driven leukemias. HoxBlinc chromatin occupancies led to elevated MLL1 recruitment and aberrant homeotic topologically associated domains (TADs) that enhanced chromatin accessibilities and activated homeotic/hematopoietic oncogenes.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India.
Foliar-applied Zn on Catharanthus roseus enhanced production of vindoline, the main impediment precursor for costly anticancer bisindoles. A leaf-abundant CrZIP was characterized for likely role in modulating vindoline metabolism. The leaf-localized Catharanthus roseus alkaloid, vindoline, is the major impediment precursor in the production of scanty and expensive anticancer bisindoles, vinblastine and vincristine.
View Article and Find Full Text PDFResolving the molecular basis of a Mendelian condition remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion-deletion and structural variant calling and diploid de novo genome assembly. This permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility and full-length transcript information in a single long-read sequencing run.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China.
Effective modulation of gene expression in plants is achievable through tools like CRISPR and RNA interference, yet methods for directly modifying endogenous proteins remain lacking. Here, we identify the E3 ubiquitin ligase E3TCD1 and develope a Targeted Condensation-prone-protein Degradation (TCD) strategy. The X-E3TCD1 fusion protein acts as a genetically engineered degrader, selectively targeting endogenous proteins prone to condensation.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
January 2025
Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy. Electronic address:
Circadian rhythms driven by biological clocks regulate physiological processes in all living organisms by anticipating daily geophysical changes, thus enhancing environmental adaptation. Time-resolved serial multi-omic analyses in vivo, ex vivo, and in synchronized cell cultures have revealed rhythmic changes in the transcriptome, proteome, and metabolome, involving up to 50 % of the mammalian genome. Mitochondrial oxidative metabolism is central to cellular bioenergetics, and many nuclear genes encoding mitochondrial proteins exhibit both circadian and ultradian oscillatory expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!