Filamentous bacteria are the oldest and simplest known multicellular life forms. By using computer simulations and experiments that address cell division in a filamentous context, we investigate some of the ecological factors that can lead to the emergence of a multicellular life cycle in filamentous life forms. The model predicts that if cell division and death rates are dependent on the density of cells in a population, a predictable cycle between short and long filament lengths is produced. During exponential growth, there will be a predominance of multicellular filaments, while at carrying capacity, the population converges to a predominance of short filaments and single cells. Model predictions are experimentally tested and confirmed in cultures of heterotrophic and phototrophic bacterial species. Furthermore, by developing a formulation of generation time in bacterial populations, it is shown that changes in generation time can alter length distributions. The theory predicts that given the same population growth curve and fitness, species with longer generation times have longer filaments during comparable population growth phases. Characterization of the environmental dependence of morphological properties such as length, and the number of cells per filament, helps in understanding the pre-existing conditions for the evolution of developmental cycles in simple multicellular organisms. Moreover, the theoretical prediction that strains with the same fitness can exhibit different lengths at comparable growth phases has important implications. It demonstrates that differences in fitness attributed to morphology are not the sole explanation for the evolution of life cycles dominated by multicellularity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203479 | PMC |
http://dx.doi.org/10.1098/rsif.2011.0102 | DOI Listing |
Exp Cell Res
January 2025
School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India. Electronic address:
Translationally controlled tumor protein (TCTP) is a well conserved and ubiquitously expressed multifunctional protein found in many organisms and is involved in many pathophysiological processes like cell proliferation, differentiation, development and cell death. The role of TCTP in anti-apoptosis and cancer metastasis makes it a promising candidate for cancer therapy. Dictyostelium discoideum, a protist, has two isoforms (TCTP1 and TCTP2, now referred to as TPT1 and TPT2) of which we have earlier elucidated TPT1.
View Article and Find Full Text PDFNat Commun
January 2025
The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
Chem Rev
January 2025
Institut Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France.
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Institute of Bioengineering, Lausanne, Switzerland.
Gene expression memory-based lineage inference (GEMLI) is a computational tool allowing to predict cell lineages solely from single-cell RNA-sequencing (scRNA-seq) datasets and is publicly available as an R package on GitHub. GEMLI is based on the occurrence of gene expression memory, i.e.
View Article and Find Full Text PDFMol Cell
December 2024
National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
In multicellular organisms, very little is known about how Ca transients on the ER outer surface elicited by autophagy stimuli are sustained and decoded to trigger autophagosome formation. Here, we show that Ca/calmodulin-dependent protein kinase II β (CaMKIIβ) integrates ER Ca transients to trigger liquid-liquid phase separation (LLPS) of the autophagosome-initiating FIP200 complex. In response to ER Ca transients, CaMKIIβ is recruited from actin filaments and forms condensates, which serve as sites for the emergence of or interaction with FIP200 puncta.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!