Identification of novel genes involved in sarcopenia through RNAi screening in Caenorhabditis elegans.

J Gerontol A Biol Sci Med Sci

Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.

Published: January 2012

Background: Aging in humans is characterized by a progressive loss of muscle mass and strength known as sarcopenia. Although considered to be a normal aspect of aging, the loss of strength can have significant effects on the health, functioning, and independence of elderly individuals. Although these aspects of sarcopenia have been well studied, the molecular mechanisms leading to its development are still unclear. The nematode Caenorhabditis elegans might be a novel animal model for sarcopenia as worms experience sarcopenia during aging and mutations affecting the daf-2/insulin-like signaling pathway are able to delay this process.

Methods: Via the use of RNA interference, we screened a total of 43 genes, most of which have been shown to be required for the enhanced longevity of daf-2 mutants, to assess for the effects of these genes on muscle function and worm mobility during aging.

Results: We identified 17 novel genes that are essential for the delay in the onset of sarcopenia in daf-2 mutants. The identified genes include splicing factors, vacuolar sorting proteins, transcription factors, and metabolic enzymes. Using a transgenic strain that only responds to RNA interference in the body wall muscle, we also found that most of the identified genes act in muscle to prevent the onset of sarcopenia.

Conclusions: Our results demonstrate that at least in worms, specific genetic pathways that modify the development of sarcopenia can be identified. Interestingly, almost all the identified genes also have a known human homolog, and hence, our findings may offer significant leads toward the identification of genes involved in sarcopenia in people.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260486PMC
http://dx.doi.org/10.1093/gerona/glr072DOI Listing

Publication Analysis

Top Keywords

identified genes
12
genes
8
novel genes
8
genes involved
8
sarcopenia
8
involved sarcopenia
8
caenorhabditis elegans
8
rna interference
8
daf-2 mutants
8
genes muscle
8

Similar Publications

Imaging-based spatial transcriptomics (iST), such as MERFISH, CosMx SMI, and Xenium, quantify gene expression level across cells in space, but more importantly, they directly reveal the subcellular distribution of RNA transcripts at the single-molecule resolution. The subcellular localization of RNA molecules plays a crucial role in the compartmentalization-dependent regulation of genes within individual cells. Understanding the intracellular spatial distribution of RNA for a particular cell type thus not only improves the characterization of cell identity but also is of paramount importance in elucidating unique subcellular regulatory mechanisms specific to the cell type.

View Article and Find Full Text PDF

Genetic diversity and selection signatures in sheep breeds.

J Appl Genet

January 2025

Departamento de Ciências Exatas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Brazil.

Natural and artificial selection in domesticated animals can cause specific changes in genomic regions known as selection signatures. Our study used the integrated haplotype score (iHS) and Tajima's D tests within non-overlapping windows of 100 kb to identify selection signatures, in addition to genetic diversity and linkage disequilibrium estimates in 9498 sheep from breeds in Ireland (Belclare, Charollais, Suffolk, Texel, and Vendeen). The mean observed and expected heterozygosity for all the sheep breeds were 0.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the third most deadly cancer diagnosed in both men and women. 5-Fluorouracil (5-FU) treatment frequently causes the CRC cells to become chemoresistance, which has a negative impact on prognosis. Using bioinformatic techniques, this work describes important genes and biological pathways linked to 5-FU resistance in CRC cells.

View Article and Find Full Text PDF

Increasing the robustness of Escherichia coli for aromatic chemicals production through transcription factor engineering.

Adv Biotechnol (Singap)

April 2024

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.

Engineering microbial cell factories has been widely used to produce a variety of chemicals, including natural products, biofuels, and bulk chemicals. However, poor robustness limits microbial production on an industrial scale. Microbial robustness is essential to ensure reliable and sustainable production of targeted chemicals.

View Article and Find Full Text PDF

RetroSeeker reveals the characteristics, expression, and evolution of a large set of novel retrotransposons.

Adv Biotechnol (Singap)

October 2023

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.

Retrotransposons are highly prevalent in most animals and account for more than 35% of the human genome. However, the prevalence, biogenesis mechanism and function of retrotransposons remain largely unknown. Here, we developed retroSeeker, a novel computational software that identifies novel retrotransposons from pairwise alignments of genomes and decodes their biogenesis, expression, evolution and potential functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!