Placental malaria infections are caused by Plasmodium falciparum-infected red blood cells sequestering in the placenta by binding to chondroitin sulfate A, mediated by VAR2CSA, a variant of the PfEMP1 family of adhesion antigens. Recent studies have shown that many P. falciparum genomes have multiple genes coding for different VAR2CSA proteins, and parasites with >1 var2csa gene appear to be more common in pregnant women with placental malaria than in nonpregnant individuals. We present evidence that, in pregnant women, parasites containing multiple var2csa-type genes possess a selective advantage over parasites with a single var2csa gene. Accumulation of parasites with multiple copies of the var2csa gene during the course of pregnancy was also correlated with the development of antibodies involved in blocking VAR2CSA adhesion. The data suggest that multiplicity of var2csa-type genes enables P. falciparum parasites to persist for a longer period of time during placental infections, probably because of their greater capacity for antigenic variation and evasion of variant-specific immune responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3096795PMC
http://dx.doi.org/10.1093/infdis/jir168DOI Listing

Publication Analysis

Top Keywords

parasites multiple
12
pregnant women
12
var2csa gene
12
falciparum parasites
8
multiple var2csa-type
8
women placental
8
placental malaria
8
var2csa-type genes
8
parasites
6
var2csa
6

Similar Publications

Differential recruitment drives pathogen-mediated competition between species in an amphibian chytridiomycosis system.

Ecol Appl

January 2025

Centre for Planetary Health and Food Security, and School of Environment and Science, Griffith University, Southport, Queensland, Australia.

Pathogens that infect multiple host species have an increased capacity to cause extinctions through parasite-mediated apparent competition. Given unprecedented and continuing losses of biodiversity due to Batrachochytrium dendrobatidis (Bd), the causative fungus of the amphibian skin disease chytridiomycosis, a robust understanding of the mechanisms driving cross-species infection dynamics is essential. Here, we used stage-structured, susceptible-infected compartmental models to explore drivers of Bd-mediated apparent competition between two sympatric amphibians, the critically endangered Litoria spenceri and the non-threatened Litoria lesueurii.

View Article and Find Full Text PDF

Background: Lymphatic filariasis (LF), a mosquito-borne parasitic disease caused by three species of filarial worms, was first detected in Niue, a small Pacific Island nation of approximately 1,600 people, in 1954. After extensive efforts involving multiple rounds of Mass Drug Administration, Niue was validated by the World Health Organization (WHO) as having e4liminated LF as a public health problem in 2016. However, no surveillance has been conducted since validation to confirm infection rates have remained below WHO's elimination threshold.

View Article and Find Full Text PDF

The Circumsporozoite Protein (PfCSP) has been used in developing the RTS,S, and R21 malaria vaccines. However, genetic polymorphisms within compromise the effectiveness of the vaccine. Thus, it is essential to continuously assess the genetic diversity of , especially when deploying it across different geographical regions.

View Article and Find Full Text PDF

Neurocysticercosis (NCC) is caused by the invasion of larvae in the central nervous system (CNS) and stands as the predominant cause of epilepsy and other neurological disorders in many developing nations. NCC diagnosis is challenging because it relies on brain imaging exams (CT or MRI), which are poorly available in endemic rural or resource-limited areas. Moreover, some NCC cases cannot be easily detected by imaging, leading to inconclusive results.

View Article and Find Full Text PDF

Does a biological invasion modify host immune responses to parasite infection?

R Soc Open Sci

January 2025

Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

Biological invasions can disrupt the close and longstanding coevolved relationships between host and parasites. At the same time, the shifting selective forces acting on demography during invasion can result in rapid evolution of traits in both host and parasite. Hosts at the invasion front may reduce investment into costly immune defences and redistribute those resources to other fitness-enhancing traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!