In this study, we investigated the increase in photosynthetic quantum yield that occurs in advance of increased microalgal growth. Haematococcus pluvialis was cultivated under normal conditions; the number of cells, the maximum quantum yield of photosystem II (F(v)/F(m)), and optical density were measured. We observed an increase in F(v)/F(m) approximately 72h prior to the cell growth phase. To confirm the relationship between photosynthetic yield and growth, samples were treated with several chemicals under high-intensity light illumination and control conditions to inhibit photosystem II and induce a decrease in the quantum photosynthetic yield. The samples were exposed to high-intensity light at an irradiance of 400μmol photonsm(-2)s(-1) for varied amount of time and were treated with chemicals such as 3-(3,4-dichlorophenyl)-1,1-dimethylurea, nigericin sodium salt and valinomycin. We observed that both the photooxidation of photosystem II reaction centers and the formation of transmembrane electrochemical gradients led to an initial decrease in fluorescence yield after the onset of high-intensity light illumination. We also observed that treatment of high-intensity light illuminated cells with antibiotics after adaptation to moderate light intensities caused a difference in photosynthetic activity. In conclusion, the maximum quantum yield of photosystem II is obtained prior to the cell growth phase and can therefore be used as a prediction parameter for cell growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2011.04.006 | DOI Listing |
J Phys Act Health
January 2025
Mackenzie Wearables Research Hub, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
Background: There are no studies examining the prospective joint association of device-based measures of sedentary time and physical activity (PA) with cancer mortality. We examined the joint associations of sedentary time and intensity-specific PA with cancer mortality in 72,458 adults from UK Biobank.
Methods: Participants wore an Axivity AX3 accelerometer on their dominant wrist for at least 3 days (with at least 1 weekend day).
Sci Rep
January 2025
Department of Environmental Studies and Geology, Bryn Mawr College, Bryn Mawr, PA, USA.
Geologic records of tropical cyclones (TCs) in low-energy, back-barrier environments are established by identifying marine sediments via their allochthonous biogeochemical signal. These records have the potential to reconstruct TC intensity and frequency through time. However, modern analog studies are needed to understand which biogeochemical indicators of overwash sediments are best preserved and how post-depositional changes may affect their preservation.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India.
Under changing climatic conditions, plant exposure to high-intensity UV-B can be a potential threat to plant health and all plant-derived human requirements, including food. It's crucial to understand how plants respond to high UV-B radiation so that proper measures can be taken to enhance tolerance towards high UV-B stress. We found that BBX22, a B-box protein-coding gene, is strongly induced within one hour of exposure to high-intensity UV-B.
View Article and Find Full Text PDFBiology (Basel)
December 2024
School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen 518172, China.
In an environmentally controlled plant factory with LED red-blue light, the effects of conventional light (4R:1B, 200 μmol·m·s, 18/6 h) and continuous light (CL, 24/0 h) with three light intensities (4R:1B, 200, 300 and 400 μmol·m·s, 24/0 h) on yield, nutritional quality, reactive oxygen species (ROS) content and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity (DPPH) in green-leaf Yidali and purple-leaf Zishan lettuces were investigated. The results showed that the dry and fresh shoot weight of two lettuces exposed to CL tended to increase with light intensity-from 200 to 400 μmol·m·s-compared to conventional light, while the leaf area tended to decrease or remained unchanged. High-intensity CL could significantly increase soluble sugar and reduce the nitrate contents of the two lettuces.
View Article and Find Full Text PDFFront Physiol
December 2024
Department of Radiology, Yiyang Central Hospital, Yiyang, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!