D-Serine is a co-agonist for NMDA-type glutamate receptors. Although D-serine levels in CSF and interstitial fluid (ISF) affect CNS function, the regulatory system remains to be fully understood. Therefore, the purpose of this study was to investigate d-serine transport across the blood-brain barrier (BBB) and blood-CSF barrier (BCSFB) and in brain parenchymal cells. D-Serine microinjected into the cerebrum was not eliminated, suggesting a negligible contribution of D-serine efflux transport at the BBB. In contrast, D-serine was taken up from the circulating blood across the BBB via a carrier-mediated process. D-Serine elimination clearance from CSF was fourfold greater than that of d-mannitol, which is considered to reflect CSF bulk flow. The characteristics of D-serine uptake by isolated choroid plexus were consistent with those of Na(+)-independent alanine-serine-cysteine transporter 1 (asc-1). Uptake of D-serine by brain slices appeared to occur predominantly via asc-1 and Na(+)-dependent alanine-serine-cysteine transporter 2. These findings suggest that the regulatory system of D-serine levels in ISF and CSF involves (i) asc-1 at the BCSFB, acting as a major pathway of D-serine elimination from the CSF, (ii) blood-to-brain and blood-to-CSF influx transport of D-serine across the BBB and BCSFB, and (iii) concentrative uptake of D-serine by brain parenchymal cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2011.07313.x | DOI Listing |
Alzheimers Dement
December 2024
Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Background: Glutamatergic neurotransmission system dysregulation may play an important role in the pathophysiology of Alzheimer's disease (AD). However, reported results on glutamatergic components across brain regions are contradictory. Here, we conducted a systematic review with meta-analysis to examine whether there are consistent glutamatergic abnormalities in the human AD brain.
View Article and Find Full Text PDFSchizophrenia (Heidelb)
December 2024
CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
Schizophrenia (SCZ) is a severe psychotic disorder characterized by a disruption in glutamatergic NMDA receptor (NMDAR)-mediated neurotransmission. Compelling evidence has revealed that NMDAR activation is not limited to L-glutamate, L-aspartate, and glycine since other free amino acids (AAs) in the atypical D-configuration, such as D-aspartate and D-serine, also modulate this class of glutamatergic receptors. Although dysregulation of AAs modulating NMDARs has been previously reported in SCZ, it remains unclear whether distinct variations of these biomolecules occur during illness progression from at-risk premorbid to clinically manifest stage.
View Article and Find Full Text PDFYakugaku Zasshi
December 2024
Department of Pharmacology, Faculty of Pharmaceutical Science, Health Sciences University of Hokkaido.
Brain Behav Immun
November 2024
Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. Electronic address:
Nat Commun
November 2024
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
Chiral metal surfaces provide an environment for enantioselective adsorption in various processes such as asymmetric catalysis, chiral recognition, and separation. However, they often suffer from limitations such as reduced enantioselectivity caused by kink coalescence and atomic roughness. Here, we present an approach using medium-entropy ceramic (MEC), specifically (CrMoTa)Si with a C40 hexagonal crystal structure, which overcomes the trade-off between thermal stability and enantioselectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!