Pancreatic β-cell apoptosis induced by palmitate requires high glucose concentrations. Ceramides have been suggested to be important mediators of glucolipotoxicity-induced β-cell apoptosis. In INS-1 β-cells, 0.4 mM palmitate with 5 mM glucose increased the levels of dihydrosphingosine and dihydroceramides, two lipid intermediates in the de novo biosynthesis of ceramides, without inducing apoptosis. Increasing glucose concentrations to 30 mM amplified palmitate-induced accumulation of dihydrosphingosine and the formation of (dihydro)ceramides. Of note, glucolipotoxicity specifically induced the formation of C(18:0), C(22:0) and C(24:1) (dihydro)ceramide molecular species, which was associated with the up-regulation of CerS4 (ceramide synthase 4) levels. Fumonisin-B1, a ceramide synthase inhibitor, partially blocked apoptosis induced by glucolipotoxicity. In contrast, apoptosis was potentiated in the presence of D,L-threo-1-phenyl-2-palmitoylamino-3-morpholinopropan-1-ol, an inhibitor of glucosylceramide synthase. Moreover, overexpression of CerS4 amplified ceramide production and apoptosis induced by palmitate with 30 mM glucose, whereas down-regulation of CerS4 by siRNA (short interfering RNA) reduced apoptosis. CerS4 also potentiates ceramide accumulation and apoptosis induced by another saturated fatty acid: stearate. Collectively, our results suggest that glucolipotoxicity induces β-cell apoptosis through a dual mechanism involving de novo ceramide biosynthesis and the formation of ceramides with specific N-acyl chain lengths rather than an overall increase in ceramide content.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BJ20101386 | DOI Listing |
Int J Surg
January 2025
Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China.
Nerve growth factor (NGF) is critical in regulating the homeostasis of microglial cells. It activates various signaling pathways that mediate the phosphorylation of cAMP response element-binding protein (CREB) at key regulatory sites. The decrease in phosphorylated CREB (p-CREB) expression is linked to neuroinflammatory responses.
View Article and Find Full Text PDFInflammation
January 2025
Department of Pharmacy, Chinese PLA General Hospital, Beijing, China.
Cholestasis is a multifactorial hepatobiliary disorder, characterized by obstruction of bile flow and accumulation of bile, which in turn causes damage to liver cells and other tissues. In severe cases, it can result in the development of life-threatening conditions, including cirrhosis and liver cancer. Paeoniflorin (PF) has been demonstrated to possess favourable therapeutic potential for the treatment of cholestasis.
View Article and Find Full Text PDFEndocrine
January 2025
Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones.
View Article and Find Full Text PDFInvest New Drugs
January 2025
School of Life Sciences, Jilin University, Changchun, China.
Due to the emergence of drug resistance, androgen receptor (AR)-targeted drugs still pose great challenges in the treatment of prostate cancer, and it is urgent to explore an innovative therapeutic strategy. MK-1775, a highly selective WEE1 inhibitor, is shown to have favorable therapeutic benefits in several solid tumor models. Recent evidence suggests that the combination of MK-1775 with DNA-damaging agents could lead to enhanced antitumor efficacy.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Ophthalmology, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC 27517, USA.
Adeno-associated virus (AAV) inverted terminal repeats (ITRs) induce p53-dependent apoptosis in human embryonic stem cells (hESCs). To interrogate this phenomenon, a synthetic ITR (SynITR), harboring substitutions in putative p53 binding sites was generated and evaluated for vector production and gene delivery. Replication of SynITR flanked transgenic genome was similar compared to wild type (wt) ITR, with a modest increase in vector titers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!