Carbon-13 NMR chemical shifts in columnar liquid crystals.

J Phys Chem B

Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.

Published: June 2011

In this article, we present quantum chemical density functional theory (DFT) calculations of the NMR (13)C chemical shift (CS) tensors in 2,3,6,7,10,11-hexahexylthiotriphenylene (HHTT). The DFT calculations are performed on a smaller model molecule where the hexyl chains were reduced to methyl groups (HMTT). These tensors are compared with our previously reported experimental results carried out under magic-angle spinning (MAS) conditions. The phase diagram of HHTT is K ↔ H ↔ D(hd) ↔ I, where H is a helical phase and D(hd) is a columnar liquid crystal. The motivation for the present study was to explain experimentally observed and puzzling thermal history effects, which resulted in different behavior in the helical phase upon cooling and heating. In particular, the CS tensors for the aromatic carbons measured in the helical phase upon heating from the solid phase were essentially unaffected, while the cooling from the columnar liquid crystal resulted in a significant averaging. We investigate the effect on the CS tensors of (i) conformational transitions, and (ii) relative molecular orientations within the columns for dimer and trimer configurations. Finally a motional wobbling (PIZZA) model for the dynamic averaging of the CS tensor in the helical phase is suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp2027669DOI Listing

Publication Analysis

Top Keywords

helical phase
16
columnar liquid
12
dft calculations
8
liquid crystal
8
phase
6
carbon-13 nmr
4
nmr chemical
4
chemical shifts
4
shifts columnar
4
liquid crystals
4

Similar Publications

Background: Recurrent coarctation of the aorta (re-CoA) is a well-known although not fully understood complication after surgical repair, typically occurring in 10%-20% of cases within months after discharge.

Objectives: To (1) characterize geometry of the aortic arch and blood flow from pre-discharge magnetic resonance imaging (MRI) in neonates after CoA repair; and (2) compare these measures between patients that developed re-CoA within 12 months after repair and patients who did not.

Methods: Neonates needing CoA repair, without associated major congenital heart defects, were included.

View Article and Find Full Text PDF

Topological magnetic skyrmions with helicity state degrees of freedom in centrosymmetric magnets possess great potential for advanced spintronics applications and quantum computing. Till date, the skyrmion study in this class of materials mostly remains focused to collinear ferromagnets with uniaxial magnetic anisotropy. Here, we present a combined theoretical and experimental study on the competing magnetic exchange-induced evolution of noncollinear magnetic ground states and its impact on the skyrmion formation in a series of centrosymmetric hexagonal noncollinear magnets, MnFeCoGe.

View Article and Find Full Text PDF

Influence of Geometric Parameters on The Hemodynamic Characteristics of The Vertebral Artery.

J Biomech Eng

January 2025

State Key Laboratory of Clean Energy Utilization, Zhejiang University, Yuquan Campus, 38 Zheda Road, Hangzhou 310027, Zhejiang, China; Shanghai Institute for Advanced Study of Zhejiang University, Zhangjiang Guochuang Center phase, No.799, Dangui Road, Shanghai 200120, China.

The carotid and vertebral arteries are principal conduits for cerebral blood supply and are common sites for atherosclerotic plaque formation. To date, there has been extensive clinical and hemodynamic reporting on carotid arteries; however, studies focusing on the hemodynamic characteristics of the vertebral artery (VA) are notably scarce. This article presents a systematic analysis of the impact of VA diameter and the angle of divergence from the subclavian artery (SA) on hemodynamic properties, facilitated by the construction of an idealized VA geometric model.

View Article and Find Full Text PDF

This paper presents the reversible transformation between two polymorphs of a hexacatenar liquid crystal () with distinct fluorescence colors at room temperature (RT). This method utilizes mechanical pressure (mechanochromism) and an electric field (E-field-chromism). The molecule (), designed with a pyrene core and 1,2,3-triazole linkers, exhibits a blue-emissive crystalline (CRY) polymorph () and a green-emissive liquid crystalline (LC) polymorph () at RT, depending on the cooling rate from the liquid phase.

View Article and Find Full Text PDF

Cellular Function of a Biomolecular Condensate Is Determined by Its Ultrastructure.

bioRxiv

December 2024

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.

Biomolecular condensates play key roles in the spatiotemporal regulation of cellular processes. Yet, the relationship between atomic features and condensate function remains poorly understood. We studied this relationship using the polar organizing protein Z (PopZ) as a model system, revealing how its material properties and cellular function depend on its ultrastructure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!