Mycobacteria are waterborne emerging pathogens causing infections in human. Mycobacteria have been previously isolated from wastewater and sludge, but their densities were not estimated due to cultural biases. In order to evaluate the impact of wastewater treatment processes on mycobacteria removal, we used a real time PCR method. First we compared six DNA extraction methods and second we used the more efficient DNA extraction procedure (i.e., enzymatic lysis combined with hexadecyltrimethylammonium bromide-NaCl procedure) in order to quantify Mycobacterium. With the aim to identify parameters that could serve as indicator of mycobacterial behavior, mycobacterial densities were measured in parallel to those of Escherichia coli and enterococci, and to concentrations of chemical parameters usually monitored in wastewater. Mycobacterium reached 5.5 × 10⁵ ± 3.9 × 10⁵ copies/L in the influent, but was not detected in the effluent after decantation and biofiltration. Most mycobacteria (98.6 ± 2.7%, i.e. 2.4 ± 0.7 log₁₀) were removed by the physical-chemical decantation, and the remaining mycobacteria were removed by biofiltration. In contrast, enterococci and E. coli were lightly removed by decantation step and mainly removed by biofiltration. Our results showed that Mycobacterium corresponds to a hydrophobic behavior linked to insoluble compound removal, whereas enterococci and E. coli refer to hydrophilic behaviors linked to soluble compound removals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es104084cDOI Listing

Publication Analysis

Top Keywords

wastewater treatment
8
escherichia coli
8
coli enterococci
8
dna extraction
8
removed biofiltration
8
enterococci coli
8
mycobacteria
5
mycobacterium
4
mycobacterium behavior
4
wastewater
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!