MurD ligase is one of the key enzymes participating in the intracellular steps of peptidoglycan biosynthesis and constitutes a viable target in the search for novel antibacterial drugs to combat bacterial drug-resistance. We have designed, synthesized, and evaluated a new series of D-glutamic acid-based Escherichia coli MurD inhibitors incorporating the 5-benzylidenethiazolidin-4-one scaffold. The crystal structure of 16 in the MurD active site has provided a good starting point for the design of structurally optimized inhibitors 73-75 endowed with improved MurD inhibitory potency (IC(50) between 3 and 7 μM). Inhibitors 74 and 75 showed weak activity against Gram-positive Staphylococcus aureus and Enterococcus faecalis. Compounds 73-75, with IC(50) values in the low micromolar range, represent the most potent D-Glu-based MurD inhibitors reported to date.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm2002525 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!