Chronic Myeloid Leukemia (CML), belonging to mieloproliferative syndromes, is one of the myeloproliferative clonal hyperplasia. It is caused by the Philadelphia chromosome resulting from the reciprocal translocation, t(9;22) between the long arms of chromosomes 9 and 22. This results in the production of fusion BCR-ABL transcript and chimeric protein--tyrosine kinase activity. This protein leads to increased proliferation, resistance to apoptosis, and worse adhesion of CML cells. Molecular analysis are very important in the era treatment of CML by tyrosine kinase inhibitors (TKI). Constant monitoring of the level of BCR-ABL transcript aimed at monitoring response to medical treatment as well as early detection of resistance to TKI therapy. The most common causes of resistance are point mutations ABL kinase domain of the BCR-ABL gene. In this aim, the biological material used (peripheral blood) derived from 58 patients of the Department of Hematology, Jagiellonian University Collegium Medicum. The isolated RNA was performed in successive stages: RT-PCR, RQ-PCR to a semi-nested PCR. In order to detect point mutations ABL kinase domain technique used direct sequencing of the product obtained in response to a semi-nested PCR. Using this technique allow in do not only a rapid detection of point mutations but also identification of its position in the ABL domain, type of mutation (e.g., T3151), as well as nucleotide and the amino acid substitution. The most common point mutations detected were T3151 and M244V.
Download full-text PDF |
Source |
---|
Leukemia
January 2025
The Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
The FLT3 gene frequently undergoes mutations in acute myeloid leukemia (AML), with internal tandem duplications (ITD) and tyrosine kinase domain (TKD) point mutations (PMs) being most common. Recently, PMs and deletions in the FLT3 juxtamembrane domain (JMD) have been identified, but their biological and clinical significance remains poorly understood. We analyzed 1660 patients with de novo AML and found FLT3-JMD mutations, mostly PMs, in 2% of the patients.
View Article and Find Full Text PDFNPJ Vaccines
January 2025
Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China.
The emergence of SARS-CoV-2 variants with defined mutations that enhance pathogenicity or facilitate immune evasion has resulted in a continual decline in the protective efficacy of existing vaccines. Therefore, there is a pressing need for a vaccine capable of combating future variants. In this study, we designed new mRNA vaccines, BSCoV05 and BSCoV06, and generated point mutations in the receptor-binding domain (RBD) of the original Wuhan strain to increase their broad-spectrum antiviral activity.
View Article and Find Full Text PDFNat Commun
January 2025
Biophysics Program, Stanford University, Stanford, CA, USA.
Understanding how proteins discriminate between preferred and non-preferred ligands ('selectivity') is essential for predicting biological function and a central goal of protein engineering efforts, yet the biophysical mechanisms underpinning selectivity remain poorly understood. Towards this end, we study how variants of the promiscuous transcription factor (TF) MAX (H. sapiens) alter DNA specificity and selectivity, yielding >1700 Ks and >500 rate constants in complex with multiple DNA sequences.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
School of Basic Medicine, Jiamusi University, Jiamusi 154000, China.
Aims: The aim of this study was to identify sesamin as a Casein hydrolase P (ClpP) inhibitor and to determine whether it could attenuate the virulence of methicillin-resistant Staphylococcus aureus (MRSA).
Methods And Results: Through fluorescence resonance energy transfer (FRET) screening, a natural compound sesamin demonstrated a significant inhibitory effect on ClpP enzyme activity with an IC50 of 20.62 μg/mL.
Free Radic Biol Med
January 2025
Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China. Electronic address:
Chronic ethanol (EtOH) consumption has been widely recognized as a significant contributor to cardiotoxicity. However, no specific treatment is currently available to ameliorate chronic ethanol induced cardiotoxicity. Adiponectin receptor agonist AdipoRon exerts protective effects in multiple organs through alleviating lipotoxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!