Adeno-associated virus (AAV) vectors have evolved over the past decade as a particularly useful gene -vector for in vivo applications. In contrast to oncoretro- and lentiviral vectors, this vector stays essentially episomal after gene transfer, making it safer because of the absence of insertional mutagenesis. AAV's non-pathogenicity is a further advantage. For decades, this vector could only be produced at a small scale for research purposes and, eventually, used at very small doses for clinical studies, because only transfection methods were available, which have limited scalability. However, since the development of scalable production methods, this bottleneck is resolved and, from a technical point of view, large quantities of AAV vectors can be produced, opening the possibility of using AAV vectors for whole body treatments in gene therapy trials. This chapter presents the basic principles of small- and large-scale production procedures as well as detailed procedure of small-scale production, purification, and analytical protocols for AAV vectors. In Chapter 10, the reader will find a large-scale production method based on the use of the insect cell/baculovirus system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-61779-095-9_9 | DOI Listing |
Int J Mol Sci
December 2024
Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
Viral vector delivery of gene therapy represents a promising approach for the treatment of numerous retinal diseases. Adeno-associated viral vectors (AAV) constitute the primary gene delivery platform; however, their limited cargo capacity restricts the delivery of several clinically relevant retinal genes. In this study, we explore the feasibility of employing high-capacity adenoviral vectors (HC-AdVs) as alternative delivery vehicles, which, with a capacity of up to 36 kb, can potentially accommodate all known retinal gene coding sequences.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA.
Background: Adeno-associated virus (AAV) 8 and 9 are in clinical trials for treating neuromuscular diseases such as Duchenne muscular dystrophy (DMD). Muscle consists of myofibres of different types and sizes. However, little is known about the fibre type and fibre size tropism of AAV in large mammals.
View Article and Find Full Text PDFJAMA Ophthalmol
January 2025
Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China.
Importance: Bietti crystalline dystrophy (BCD) is a severe genetic retinopathy caused by variants in the CYP4V2 gene. Currently, there is no approved treatment for BCD.
Objective: To evaluate safety and vision outcomes following gene therapy with adeno-associated virus (AAV) encoding CYP4V2 (rAAV-hCYP4V2, NGGT001 [Next Generation Gene Therapeutics]).
Exp Neurol
January 2025
CERVO Brain Research Centre, Québec, Québec G1J 2G3, Canada; Department of Psychiatry and Neuroscience, Université Laval, Québec City G1V 0A6, Canada. Electronic address:
Chronic cerebral hypoperfusion induced by permanent unilateral common carotid artery occlusion in mice was recently found to induce an age-dependent formation of insoluble cytoplasmic TDP-43 aggregates reminiscent of pathological changes found in human vascular dementia. In this model, the gradual deregulation of TDP-43 homeostasis in cortical neurons was associated with marked cognitive and motor deficits. To target the TDP-43-mediated toxicity in this model, we generated an adeno-associated virus vector encoding a single-chain antibody against TDP-43, called scFv-E6, designed for pan-neuronal transduction following intravenous administration.
View Article and Find Full Text PDFBiotechnol J
January 2025
Drug Substance Development, Spark Therapeutics, Inc., Philadelphia, USA.
Adeno-associated virus (AAV) vectors have become a leading platform for gene delivery. A major portion of gene therapy currently in clinical trials are AAV-based for a wide range of diseases. A commonly used method for AAV production is by mammalian or insect cell culture, with or without added viruses to introduce needed genetic elements for AAV production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!