Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The amount of light scattered by airborne particles inside an aerosol photometer will vary not only with the mass concentration, but also with particle properties such as size, shape, and composition. This study conducted controlled experiments to compare the measurements of a real-time photometer, the SidePak AM510 monitor (SidePak), with gravimetric mass. PM sources tested were outdoor aerosols, and four indoor combustion sources: cigarettes, incense, wood chips, and toasting bread. The calibration factor for rescaling the SidePak measurements to agree with gravimetric mass was similar for the cigarette and incense sources, but different for burning wood chips and toasting bread. The calibration factors for ambient urban aerosols differed substantially from day to day, due to variations in the sources and composition of outdoor PM. A field evaluation inside a casino with active smokers yielded calibration factors consistent with those obtained in the controlled experiments with cigarette smoke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0em00732c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!