We report a novel protocol to prepare titania hollow nanospheres of size about 28 ± 1 nm with micelles of asymmetric triblock copolymers. The hollow particles exhibit unique electrochemical properties in lithium ion rechargeable batteries such as high capacity, very low irreversible capacity loss, and high cycling performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1cc11902h | DOI Listing |
J Colloid Interface Sci
December 2024
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China. Electronic address:
Photocatalytically reducing CO into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
J Colloid Interface Sci
February 2025
College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu ProvinceGa, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, Lanzhou, Gansu 730030, PR China. Electronic address:
Int J Biol Macromol
November 2024
College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China. Electronic address:
In this study, hierarchical cellulose acetate/polyvinylpyrrolidone hollow microfibers (CA/PVP HMFs) were first prepared via a dip coating method using a steel wire as tubular template and then supported a sol-gel deposition of titania nanoparticles (NPs) to derive CA/PVP@titania NP HMFs. After hydrothermally treated in NaOH solution, CA/PVP@titania NP HMFs were transformed to CA/PVP@titania nanowire (NW) HMFs. SEM observation showed that CA/PVP@titania NW HMFs had a hollow structure with diameters of 450-600 μm and exhibited a hierarchical and nanofibrous structure.
View Article and Find Full Text PDFMaterials (Basel)
September 2024
School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechniou Street, Zografou, 15772 Athens, Greece.
This comprehensive study explores the kinetics of adsorption and its photocatalytic degradation of methyl orange (MO) using an advanced copper-decorated photocatalyst in the form of hollow fibers (HFs). Designed to boost both adsorption capacity and photocatalytic activity, the photocatalyst was tested in batch experiments to efficiently remove MO from aqueous solutions. Various isotherm models, including Langmuir, Freundlich, Sips, Temkin, and Dubinin-Radushkevich, along with kinetic models like pseudo-first and pseudo-second order, Elovich, Bangham, and Weber-Morris, were utilized to assess adsorption capacity and kinetics at varying initial concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!