Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fe(3)O(4) nanoparticles covalently linked to a gold electrode have been used for immobilizing catalase (CAT) enzyme to sense the presence of various concentrations of H(2)O(2). These nanoparticles ranging from 20 to 30 nm were synthesized by thermal co-precipitation of ferric and ferrous chlorides. SEM and XRD have been used for morphological and structural characterization of Fe(3)O(4) nanoparticles. CAT enzyme was linked covalently to the surface of iron oxide using carbodiimide in phosphate buffer (pH 7.4) at 4 °C. The enzyme-iron oxide link was confirmed by FT-IR spectroscopy. Sensing studies carried out using cyclic voltammetry showed a linear response of the CAT/nano Fe(3)O(4)/Au bioelectrode towards H(2)O(2) between 1.5 and 13.5 µM with a very sharp response time of 2 s.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/22/26/265505 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!