L-arginine metabolism in myeloid cells plays a central role in the processes of macrophage activation and in the regulation of immune responses. In this study, we investigated arginine transport activity and the expression of the related transporter genes during the differentiation of monocytes to macrophages. We show here that the induction of THP-1 monocyte differentiation by PMA markedly increases the expression of SLC7A7 mRNA and of y(+)LAT1 protein and consequently, the activity of system y(+)L-mediated arginine transport. Conversely, the activity of system y(+) decreases during macrophage differentiation as a result of a reduction in CAT1 protein expression. The PMA-induced, macrophage-differentiated phenotype and the increased activity of system y(+)L through the induction of SLC7A7 gene are mediated by the specific activation of PKCβ. SLC7A7 gene silencing causes a significant reduction of system y(+)L activity and a subsequent, marked increase of arginine and lysine cell content, thus suggesting that in macrophagic cells, system y(+)L activity is mainly directed outwardly. Differentiating agents other than PMA, i.e., VD3 and ATRA, are equally effective in the stimulation of system y(+)L transport activity through the increased expression of SLC7A7 mRNA and y(+)LAT1 protein. Moreover, we found that also during differentiation of human monocytes from peripheral blood SLC7A7 mRNA and system y(+)L activity are increased. These findings point to SLC7A7 gene as a marker of macrophage differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1189/jlb.0910510DOI Listing

Publication Analysis

Top Keywords

system y+l
20
arginine transport
12
macrophage differentiation
12
slc7a7 mrna
12
activity system
12
slc7a7 gene
12
y+l activity
12
activity
8
transport activity
8
expression slc7a7
8

Similar Publications

Membrane technology, especially nanofiltration (NF) has great attention to provide an imperative solution for water issues. The membrane is considered to be the heart in the separation plant. Understanding the membrane characteristics could allow predicting and optimizing the membrane performance namely flux, rejection and reduced fouling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!