Mesenchymal stem cells for the treatment of systemic lupus erythematosus: is the cure for connective tissue diseases within connective tissue?

Stem Cell Res Ther

Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Avda San Carlos de Apoquindo 2200, Las Condes, Santiago 7620001, Chile.

Published: May 2011

Mesenchymal stem cells (MSCs) are now known to display not only adult stem cell multipotency but also robust anti-inflammatory and regenerative properties. After widespread in vitro and in vivo preclinical testing in several autoimmune disease models, allogenic MSCs have been successfully applied in patients with severe treatment-refractory systemic lupus erythematosus. The impressive results of these uncontrolled phase I and II trials - mostly in patients with non-responding renal disease - point to the need to perform controlled multicentric trials. In addition, they suggest that there is much to be learned from the basic and clinical science of MSCs in order to reap the full potential of these multifaceted progenitor cells in the treatment of autoimmune diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152993PMC
http://dx.doi.org/10.1186/scrt64DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
8
stem cells
8
cells treatment
8
systemic lupus
8
lupus erythematosus
8
treatment systemic
4
erythematosus cure
4
cure connective
4
connective tissue
4
tissue diseases
4

Similar Publications

Background: Premature ovarian insufficiency (POI) is a refractory disease that severely affects female fertility. The PERK/eIF-2α/ATF4/CHOP pathway is one of the classical pathways involved in the unfolded protein response to endoplasmic reticulum stress by regulating protein synthesis and promoting apoptosis. This study aimed to investigate the functional role and mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in the POI animal model through the PERK/eIF-2α/ATF4/CHOP pathway.

View Article and Find Full Text PDF

Lyophilized powder of calf bone marrow hydrolysate liposomes improved renal anemia: In vitro and in vivo evaluation.

PLoS One

December 2024

Department of Research and Development, Jinan Perfect Biological Technology Co., LTD, Jinan, Shandong, China.

This study aimed to find whether oral administration of calf bone marrow hydrolysate liposomes (CBMHL) can improve renal anemia. Calf bone marrow was defatted, papain hydrolyzed, liposomalized and lyophilized. Its hematopoietic ability was proved by the colony formation experiment of umbilical cord blood hematopoietic stem cells in vitro.

View Article and Find Full Text PDF

Chromatin-site-specific accessibility: A microtopography-regulated door into the stem cell fate.

Cell Rep

December 2024

Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province 310058, China. Electronic address:

Biomaterials that mimic extracellular matrix topography are crucial in tissue engineering. Previous research indicates that certain biomimetic topography can guide stem cells toward multiple specific lineages. However, the mechanisms by which topographic cues direct stem cell differentiation remain unclear.

View Article and Find Full Text PDF

The neural crest (NC) is an embryonic cell population with high migratory capacity. It contributes to forming several organs and tissues, such as the craniofacial skeleton and the peripheral nervous system of vertebrates. Both pre-migratory and post-migratory NC cells are plastic, adopting multiple differentiation paths by responding to different inductive environmental signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!