We describe the isolation of ten polymorphic microsatellite loci from the mayfly Ameletus inopinatus. Loci had di- or trinucleotide repeat motifs and were highly variable with three to 17 alleles (mean = 7.15). Observed heterozygosity ranged from 0.143 to 0.905. One locus (Ami_202) showed significant deviation from Hardy-Weinberg equilibrium in one population, but no evidence for null alleles. One locus (Ami_73) was significantly linked with three other loci. The remaining nine loci should prove highly informative for population genetic studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1755-0998.2008.02356.x | DOI Listing |
Mov Disord
January 2025
British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
Background: Trinucleotide repeat expansions are an emerging class of genetic variants associated with various movement disorders. Unbiased genome-wide analyses can reveal novel genotype-phenotype associations and provide a diagnosis for patients and families.
Objective: The aim was to identify the genetic cause of a severe progressive movement disorder phenotype in 2 affected brothers.
Metabolites
January 2025
Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA.
Background: Huntington's disease (HD) is a multifaceted neurological disorder characterized by the progressive deterioration of motor, cognitive, and psychiatric functions. Despite a limited understanding of its pathogenesis, research has implicated abnormal trinucleotide cytosine-adenine-guanine CAG repeat expansion in the huntingtin gene (HTT) as a critical factor. The development of innovative strategies is imperative for the early detection of predictive biomarkers, enabling timely intervention and mitigating irreversible cellular damage.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Department of Neurology of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
Background: Spinocerebellar ataxia type 3 (SCA3) is a hereditary disease caused by abnormally expanded CAG repeats in the ATXN3 gene. The study aimed to identify potential biomarkers for assessing therapeutic efficacy by investigating the associations between expanded CAG repeat size, brain and spinal cord volume loss, and motor functions in patients with SCA3.
Methods: In this prospective, cross-observational study, we analyzed 3D T1-weighted MRIs from 92 patients with SCA3 and 42 healthy controls using voxel-based morphometry and region of interest approaches.
BMJ Case Rep
January 2025
Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
An African American man in his early 40s with progressive gait impairment and chronic cognitive impairment initially presented to the emergency department after statements of self-harm and was hospitalised. Examination revealed notable neurological abnormalities including impaired memory recall, oral dyskinesia/choreiform movements, dystonia of the right upper extremity with drift, hyper-reflexia and spastic gait. On further evaluation, including neurology and genetics consultation and workup, a clinical diagnosis of the neurodegenerative disorder Huntington's disease (HD) was made.
View Article and Find Full Text PDFCerebellum
January 2025
Genetics Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Insurgentes Sur 3877. La Fama, Tlalpan, 14269, Mexico City, Mexico.
Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant (AD) neurodegenerative disorder prevalent in the Americas, particularly in Mexico. Clinical manifestations include progressive ataxia and epilepsy. However, it can exhibit wide phenotypic variability and even reduced penetrance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!