Isolation and characterization of 30 polymorphic microsatellite loci from the mycophagous fly Drosophila innubila.

Mol Ecol Resour

Department of Biology, University of Rochester, Rochester, NY 14627, USA, Department of Genetics, University of Georgia, Athens, GA 30602, USA.

Published: July 2008

Drosophila innubila is a mushroom-feeding member of the quinaria group, found in the woodlands and forests of the 'sky islands' in Arizona and New Mexico and extending south into central Mexico. Here, we describe and characterize 30 polymorphic microsatellite loci from D. innubila collected in the Chiricahua Mountains in Arizona. The number of alleles ranged from three to 21, and observed heterozygosity ranged from 0.0513 to 0.9737. Six loci were putatively X-linked, six departed from Hardy-Weinberg equilibrium, seven had evidence of null alleles, and six showed evidence of linkage disequilibrium. These markers will be useful for examining population structure of D. innubila and its association with male-killing Wolbachia.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1755-0998.2008.02124.xDOI Listing

Publication Analysis

Top Keywords

polymorphic microsatellite
8
microsatellite loci
8
drosophila innubila
8
isolation characterization
4
characterization polymorphic
4
loci mycophagous
4
mycophagous fly
4
fly drosophila
4
innubila
4
innubila drosophila
4

Similar Publications

Natural hybridisation among rare or endangered species and stable congenerics is increasingly topical for the conservation of species-level diversity under anthropogenic impacts. Evidence for beneficial genes being introgressed into or selected for in hybrids raises concurrent questions about its evolutionary significance. In Darwin's tree finches on the island of Floreana (Galapagos Islands, Ecuador), the Critically Endangered medium tree finch () undergoes introgression with the stable small tree finch (), and hybrids regularly backcross with Earlier studies in 2005-2013 documented an increase in the frequency of hybridisation on Floreana using field-based and microsatellite data.

View Article and Find Full Text PDF

Genome-wide development of simple sequence repeat (SSR) markers at 2-Mb intervals in lotus (Nelumbo Adans.).

BMC Genomics

January 2025

Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, No. 3888 Chenhua Road, Songjiang District, Shanghai, 201602, China.

Background: Despite the rapid advancement of high-throughput sequencing, simple sequence repeats (SSRs) remain indispensable molecular markers for various applied and research tasks owing to their cost-effectiveness and ease of use. However, existing SSR markers cannot meet the growing demand for research on lotus (Nelumbo Adans.) given their scarcity and weak connections to the lotus genome.

View Article and Find Full Text PDF

Genomic microsatellite characterization and development of polymorphic microsatellites in Eospalax baileyi.

Sci Rep

January 2025

Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural College, Gansu Agricultural University, Lanzhou, 730070, China.

Microsatellite markers are cost-effective, rapid, efficient, and show great advantages in in large-sample kinship analysis and population structure studies. However, microsatellite loci are seriously underdeveloped in non-model organisms. The plateau zokor (Eospalax baileyi) is a key species living underground in the Tibetan Plateau, the effective management of which has long been challenging.

View Article and Find Full Text PDF

Tracking Somatic Mutations for Lineage Reconstruction.

Methods Mol Biol

January 2025

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.

The human genome is composed of distinct genomic regions that are susceptible to various types of somatic mutations. Among these, Short Tandem Repeats (STRs) stand out as the most mutable genetic elements. STRs are short repetitive polymorphic sequences, predominantly situated within noncoding sectors of the genome.

View Article and Find Full Text PDF

In China, medicinal with double flowers (DFs) does not produce seeds, yet it possesses significantly higher paeoniflorin content compared with its single-flowered counterpart. The propagation of medicinal with DFs relies solely on rhizomes. However, due to economic motivations, the rhizomes of medicinal with single flowers (SFs) are often mixed with those of medicinal with DFs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!