Previous study indicated that in a coculture system of keratinocytes and dorsal-root-ganglion-derived (DRG) cells, mechanical stimulation of keratinocytes induced ATP-mediated calcium propagation and excitation of DRG cells. Here, we examined two different coculture systems of keratinocytes and DRG cells. In one, we seeded keratinocytes first and then seeded DRG cells on the keratinocytes. In this system, nerve fibres from DRG cells passed between keratinocytes. Mechanical stimulation of keratinocytes did not induce excitation of DRG cells. In the other, we seeded both cell types together. At first, each cell type grew separately, forming cell aggregates. Then, nerve fibres grew out from the DRG cell aggregates to keratinocyte aggregates and penetrated into them. In this system, mechanical stimulation of keratinocytes induced excitation of the nerve fibres, but the excitation was not completely blocked by apyrase, an ATP-degrading enzyme. These results suggest that coculture of keratinocytes and DRG can generate a variety of structures, depending on the seeding conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0625.2011.01276.xDOI Listing

Publication Analysis

Top Keywords

drg cells
24
mechanical stimulation
12
stimulation keratinocytes
12
nerve fibres
12
keratinocytes
10
coculture system
8
system keratinocytes
8
keratinocytes dorsal-root-ganglion-derived
8
drg
8
keratinocytes induced
8

Similar Publications

Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.

View Article and Find Full Text PDF

Therapeutic effect of novel drug candidate, PRG-N-01, on NF2 syndrome-related tumor.

Neuro Oncol

December 2024

Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.

Background: NF2-related schwannomatosis (NF2-SWN) is associated with multiple benign tumors in the nervous system. NF2-SWN, caused by mutations in the NF2 gene, has developed into intracranial and spinal schwannomas. Because of the high surgical risk and frequent recurrence of multiple tumors, targeted therapy is necessary.

View Article and Find Full Text PDF

Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs.

View Article and Find Full Text PDF

The complex relationship between inflammation, its effects on neuronal excitability and the ensuing plasticity of dorsal root ganglion (DRG) sensory neurons remains to be fully explored. In this study, we have employed a system of experiments assessing the impact of inflammatory conditioned media derived from activated immune cells on the excitability and activity of DRG neurons and how this relates to subsequent growth responses of these cells. We show here that an early phase of increased neuronal activity in response to inflammatory conditioned media is critical for the engagement of plastic processes and that neuronal excitability profiles are linked through time to the structural phenotype of individual neurons.

View Article and Find Full Text PDF

Transient Receptor Potential Ankyrin 1 (TRPA1) is a non-selective cation channel involved in detecting harmful stimuli and endogenous ligands, primarily expressed in sensory neurons. Due to its role in pain and itch, TRPA1 is a potential drug target. We identified an oxindole core structure via high-throughput screening, modified it, and tested the modified compounds in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!