Previous study indicated that in a coculture system of keratinocytes and dorsal-root-ganglion-derived (DRG) cells, mechanical stimulation of keratinocytes induced ATP-mediated calcium propagation and excitation of DRG cells. Here, we examined two different coculture systems of keratinocytes and DRG cells. In one, we seeded keratinocytes first and then seeded DRG cells on the keratinocytes. In this system, nerve fibres from DRG cells passed between keratinocytes. Mechanical stimulation of keratinocytes did not induce excitation of DRG cells. In the other, we seeded both cell types together. At first, each cell type grew separately, forming cell aggregates. Then, nerve fibres grew out from the DRG cell aggregates to keratinocyte aggregates and penetrated into them. In this system, mechanical stimulation of keratinocytes induced excitation of the nerve fibres, but the excitation was not completely blocked by apyrase, an ATP-degrading enzyme. These results suggest that coculture of keratinocytes and DRG can generate a variety of structures, depending on the seeding conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-0625.2011.01276.x | DOI Listing |
Sci Rep
December 2024
Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.
View Article and Find Full Text PDFNeuro Oncol
December 2024
Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.
Background: NF2-related schwannomatosis (NF2-SWN) is associated with multiple benign tumors in the nervous system. NF2-SWN, caused by mutations in the NF2 gene, has developed into intracranial and spinal schwannomas. Because of the high surgical risk and frequent recurrence of multiple tumors, targeted therapy is necessary.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA.
Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs.
View Article and Find Full Text PDFJ Neurochem
January 2025
Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
The complex relationship between inflammation, its effects on neuronal excitability and the ensuing plasticity of dorsal root ganglion (DRG) sensory neurons remains to be fully explored. In this study, we have employed a system of experiments assessing the impact of inflammatory conditioned media derived from activated immune cells on the excitability and activity of DRG neurons and how this relates to subsequent growth responses of these cells. We show here that an early phase of increased neuronal activity in response to inflammatory conditioned media is critical for the engagement of plastic processes and that neuronal excitability profiles are linked through time to the structural phenotype of individual neurons.
View Article and Find Full Text PDFBioorg Chem
December 2024
Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China. Electronic address:
Transient Receptor Potential Ankyrin 1 (TRPA1) is a non-selective cation channel involved in detecting harmful stimuli and endogenous ligands, primarily expressed in sensory neurons. Due to its role in pain and itch, TRPA1 is a potential drug target. We identified an oxindole core structure via high-throughput screening, modified it, and tested the modified compounds in vitro and in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!