[1-Phenyl-2-(4-pyrid-yl)ethyl-idene]hydrazine.

Acta Crystallogr Sect E Struct Rep Online

Department of Chemistry and Material Science, Hengyang Normal University, Hengyang, Hunan 421008, People's Republic of China.

Published: April 2009

The title compound, C(13)H(13)N(3), is non-planar, with the pyridine and phenyl rings inclined at an angle of 80.7 (3)°. The central ethyl-idenehydrazine atoms lie in a plane [mean deviation = 0.013 (1) Å], which forms dihedral angles of 88.5 (1) and 9.4 (1)° with the pyridine and phenyl rings, respectively. In the crystal structure, mol-ecules are linked by inter-molecular N-H⋯N hydrogen bonds into infinite chains propagating along the b axis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2977769PMC
http://dx.doi.org/10.1107/S1600536809014330DOI Listing

Publication Analysis

Top Keywords

pyridine phenyl
8
phenyl rings
8
[1-phenyl-2-4-pyrid-ylethyl-idene]hydrazine title
4
title compound
4
compound c13h13n3
4
c13h13n3 non-planar
4
non-planar pyridine
4
rings inclined
4
inclined angle
4
angle 807 3°
4

Similar Publications

Heart failure with preserved ejection fraction (HFpEF) accounts for approximately 50% of heart failure cases globally, and this incidence is increasing due to extended lifespans and accumulating comorbidities. Emerging evidence suggests that Wnt signaling plays a role in cardiomyocyte hypertrophy and cardiac fibrosis, which are key features of HFpEF. Furthermore, Porcupine (PORCN) inhibitors, which negatively regulate Wnt signaling, have shown promising results in improving cardiac function and reducing cardiac hypertrophy and/or fibrosis.

View Article and Find Full Text PDF

Parkinson's disease (PD), characterized by progressive degeneration of dopaminergic neurons in substantia nigra, has no disease-modifying therapy. Mesenchymal stem cell (MSC) therapy has shown great promise as a disease-modifying solution for PD. Induced pluripotent stem cell-derived MSC (iMSC) not only has stronger neural repair function, but also helps solve the problem of MSC heterogeneity.

View Article and Find Full Text PDF

This study presents a comprehensive exploration of the synthesis of novel compounds targeting Chagas Disease (CD) caused by Trypanosoma cruzi. It is a global health threat with over 6-7 million infections worldwide. Addressing challenges in current treatments, the investigation explores diverse compound classes, including thiazoles, thiazolidinone, imidazole, pyrazole, 1,6-diphenyl-1H-pyrazolo[3,4-b] pyridine, pyrrole, naphthoquinone, neolignan, benzeneacyl hydrazones, and chalcones-based compounds.

View Article and Find Full Text PDF

Photoinduced Reductive C-O Couplings from Unsymmetrical Bis-Cyclometalated Pt(IV) Dicarboxylato Complexes.

Inorg Chem

December 2024

Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo 19, Murcia 30100, Spain.

Unsymmetrical bis-cyclometalated dicarboxylato complexes (-6-32)-[Pt(tpy)(OCR)] [tpy = cyclometalated 2-(-tolyl)pyridine, R = -Bu (), Me (), Ph (), CF ()], are obtained from the reaction of -[Pt(tpy)] with the appropriate PhI(OCR) reagent. Treatment of complexes of this type with different carboxylates (R'CO) results in the formation of mixed-carboxylato derivatives, namely (-6-43)-[Pt(tpy)(OCMe)(OCR')] [R' = -Bu (), CF (), Ph ()], (-6-34)-[Pt(tpy)(OCCF)(OCR')] [R' = -Bu (), Me (), Ph ()], and (-6-34)-[Pt(tpy)(OC--Bu)(OCMe)] (). Irradiation of - and - with UV light (365 nm) in MeCN gives 5-methyl-2-(2-pyridyl)phenyl pivalate (), 5-methyl-2-(2-pyridyl)phenyl acetate () or 5-methyl-2-(2-pyridyl)phenyl benzoate () as the major photoproduct from most complexes, resulting from a reductive C-O coupling between a tpy ligand and a carboxylato ligand.

View Article and Find Full Text PDF

This study aimed to determine the effects of novel N-{3-[(pyridin-4-yl)carbamoyl] phenyl} thiophene-2-carboxamide or PCPTC chemical moiety loaded Poly(lactic-co-glycolic acid)-Poly (Ethylene glycol) or (PLGA-PEGylated) NP as an anti-metastatic Ran GTPase therapeutic agent on MDA-MB231 triple-negative human breast cancer cells. Molecular docking and MD simulation was done to determine the binding potential of novel carboxamide PCPTC with Ran GTPase. PLGA and PLGA-PEG based NP encapsulating PCPTC were fabricated using the Modified Double Emulsion Solvent Evaporation Technique and characterized for size, zeta potential, polydispersity and morphology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!