THE TITLE COMPOUND [SYSTEMATIC NAME: (methoxy-carbonyl-meth-yl)ammonium chloride], crystallizes as a salt, C(3)H(8)NO(2) (+)·Cl(-), with the charged species inter-acting mutually via strong and highly directional N(+)-H⋯Cl(-) hydrogen bonds which lead to the formation of a supra-molecular tape running parallel to the c axis. Tapes close pack in the solid state mediated by multipoint recognition synthons based on weak C-H⋯O inter-actions and van der Waals contacts between adjacent methyl groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2977392PMC
http://dx.doi.org/10.1107/S1600536809028414DOI Listing

Publication Analysis

Top Keywords

glycine methyl
4
methyl ester
4
ester hydro-chloride
4
hydro-chloride title
4
title compound
4
compound [systematic
4
[systematic methoxy-carbonyl-meth-ylammonium
4
methoxy-carbonyl-meth-ylammonium chloride]
4
chloride] crystallizes
4
crystallizes salt
4

Similar Publications

Background: Intervertebral disc degeneration disease (IVDD) is a prevalent orthopedic condition that causes chronic lower back pain, imposing a substantial economic burden on patients and society. Despite its high incidence, the pathophysiological mechanisms of IVDD remain incompletely understood.

Objective: This study aimed to identify metabolomic alterations in IVDD patients and explore the key metabolic pathways and metabolites involved in its pathogenesis.

View Article and Find Full Text PDF

The N-methyl-D-aspartate (NMDA) glutamate receptor is a major target of ethanol, and it is implicated in learning and memory formation, and other cognitive functions. Glycine acts as a co-agonist for this receptor. We examined whether Org24598, a selective inhibitor of glycine transporter1 (GlyT1), affects ethanol withdrawal-induced deficits in recognition memory (Novel Object Recognition (NOR) task) and spatial memory (Barnes Maze (BM) task) in rats, and whether the NMDA receptor glycine site participates in this phenomenon.

View Article and Find Full Text PDF

Salt stress poses a significant challenge to plant growth and restricts agricultural development. To delve into the intricate mechanisms involved in soybean's response to salt stress and find targets to improve the salt resistance of soybean, this study integrated transcriptomic, proteomic, and metabolomic analyses to explore the regulatory networks involved in soybean salt tolerance. Transcriptomic analysis revealed significant changes in transcription factors, hormone-related groups, and calcium ion signaling.

View Article and Find Full Text PDF

Schizophrenia (SZ) is a complex, chronic mental disorder characterized by positive symptoms (such as delusions and hallucinations), negative symptoms (including anhedonia, alogia, avolition, and social withdrawal), and cognitive deficits (affecting attention, processing speed, verbal and visuospatial learning, problem-solving, working memory, and mental flexibility). Extensive animal and clinical studies have emphasized the NMDAR hypofunction hypothesis of SZ. Glycine plays a crucial role as an agonist of NMDAR, enhancing the receptor's affinity for glutamate and supporting normal synaptic function and plasticity, that is, signal transmission between neurons.

View Article and Find Full Text PDF

Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) has been proposed to underlie the pathophysiology of schizophrenia, suggesting that promoting NMDAR activity may alleviate the negative or cognitive symptoms associated with schizophrenia. To circumvent excitotoxicity that may accompany direct agonism of the glutamate binding site on the NMDAR, therapeutic trials have focused on targeting the glycine binding site on the NMDAR. Direct administration of either glycine or D-serine, both of which are endogenous coagonists at the NMDAR glycine site, has yielded mixed outcomes across an array of clinical trials investigating different doses or patient populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!