In the title compound, [Ni(SO(4))(C(12)H(8)N(2))(2)]·C(2)H(6)O(2), the coordination polyhedron around the Ni(2+) ion is a distorted octahedron, with four N atoms from two phenanthroline groups and two O atoms from a bidentate sulfate ligand. The Ni(2+) ion lies on a special position of site symmetry 2. Inter-molecular O-H⋯O hydrogen bonds help to stabilize the structure. The OH group of the ethane-1,2-diol solvent is disordered over two positions with equal occupancy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2977342 | PMC |
http://dx.doi.org/10.1107/S1600536809026269 | DOI Listing |
RSC Adv
January 2025
Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
This work presents the development of a rhodamine-based colorimetric and turn-on fluorescent chemosensor (P1) designed for selective recognition of Ni ions. Chemosensor P1 exhibited remarkable sensitivity and selectivity for Ni ions, exhibiting clear colorimetric and fluorescence responses. The binding interactions were meticulously examined using UV-Vis.
View Article and Find Full Text PDFPlant Physiol Biochem
October 2024
International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China; V.F. Kuprevich Institute of Experimental Botany, National Academy of Sciences of Belarus, Minsk, Belarus. Electronic address:
Nickel is both an important nutrient and an ecotoxicant for plants. Organic ligands, such as L-histidine (His), play a key role in Ni detoxification. Here, we show that His (added together with 0.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Electrical Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India.
Graphene quantum dots (GQDs) are highly valued for their chemical stability, tunable size, and biocompatibility. Utilizing green chemistry, a microwave-assisted synthesis method was employed to produce water-soluble GQDs from Mangifera Indica leaf extract. This approach is efficient, cost-effective, and environmentally friendly, offering reduced reaction times, energy consumption, and uniform particle sizes, and has proven advantageous over other methods.
View Article and Find Full Text PDFEnviron Technol
January 2025
Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa.
An increasing amount of water pollution is being caused by an increase in industrial activity. Recently, a wide range of methods, including extraction, chemical coagulation, membrane separation, chemical precipitation, adsorption, and ion exchange, have been used to remove heavy metals from aqueous solutions. The adsorption technique is believed to be the most highly effective method for eliminating heavy metals from wastewater among all of them.
View Article and Find Full Text PDFJ Biotechnol
January 2025
Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan. Electronic address:
Nickel-NTA affinity chromatography is the current standard method for purifying Histagged recombinant proteins. However, this process involves repetitive tasks, can be time-consuming, and reduces protein yield. Here, we present a simple, fast, and handy method for purifying His-tagged proteins using free Ni²⁺.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!