In the title hydrated mol-ecular salt, C(6)H(7)ClN(+)·C(2)HO(4) (-)·0.5H(2)O, the water O atom lies on a crystallographic twofold axis. In the crystal, the anions are linked by O-H⋯O hydrogen bonds, forming chains propagating along the b axis. These chains are inter-connected through O-H⋯O hydrogen bonds from the water mol-ecules and N-H⋯O hydrogen bonds from the cations, building layers parallel to the ab plane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2984091PMC
http://dx.doi.org/10.1107/S160053681001144XDOI Listing

Publication Analysis

Top Keywords

hydrogen bonds
12
o-h⋯o hydrogen
8
4-chloro-anilinium hydrogen
4
hydrogen oxalate
4
oxalate hemihydrate
4
hemihydrate title
4
title hydrated
4
hydrated mol-ecular
4
mol-ecular salt
4
salt c6h7cln+·c2ho4
4

Similar Publications

Hydrogen Bond Blueshifts in Nitrile Vibrational Spectra Are Dictated by Hydrogen Bond Geometry and Dynamics.

JACS Au

December 2024

Freie Universität Berlin, Physics Department, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany.

Vibrational Stark effect (VSE) spectroscopy has become one of the most important experimental approaches to determine the strength of noncovalent, electrostatic interactions in chemistry and biology and to quantify their influence on structure and reactivity. Nitriles (C≡N) have been widely used as VSE probes, but their application has been complicated by an anomalous hydrogen bond (HB) blueshift which is not encompassed within the VSE framework. We present an empirical model describing the anomalous HB blueshift in terms of H-bonding geometry, i.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a neurological disorder, is one of the major reasons for memory loss in the world. AD is characterized by a sequela of cognitive and functional decline caused by brain cell degeneration. Paeoniflorin is a monoterpenoid glycoside found in plants of the Paeoniaceae family, which are known for their medicinal properties including dementia.

View Article and Find Full Text PDF

Prodrug-based nanoassemblies are promising platforms for cancer therapy. Prodrugs typically consist of three main components: drug modules, intelligent response modules, and modification modules. However, the available modification modules are usually hydrophobic aliphatic side chains, which affect the activation efficiency of the prodrugs.

View Article and Find Full Text PDF

The coamorphous formulations have attracted increasing interest due to enhanced solubility and bioavailability, together with synergistic pharmacological effects. In this study, a ternary coamorphous system of polyphenols was successfully prepared, wherein baicalein (Bai) and resveratrol (Res) were constructed into a single-phase coamorphous system mediated by piperine (Pip). FTIR and ss C NMR spectra together with quantum chemical calculation and molecular dynamics simulation suggested Pip as a molecular bridge connected Bai and Res molecules through π-π stacking and hydrogen bonding interactions.

View Article and Find Full Text PDF

Adhesive polyelectrolyte coating on PLGA particles prolongs drug retention to vessel lesion.

J Control Release

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, China. Electronic address:

Restenosis, the re-narrowing of blood vessels after drug-coated balloons (DCBs), remains a major clinical issue. While rapamycin is the current clinical option for preventing restenosis due to its effectiveness and low toxicity, its delivery is limited by poor tissue absorption and rapid clearance, leading to suboptimal drug retention. Here, we developed the adhesive-polyelectrolyte-coated poly(lactic-co-glycolic acid) (PLGA) particles using in-situ UV-triggered polymerization, encapsulating rapamycin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!